在前几次迭代中,损失开始减少。但是当迭代达到一定数量时,损耗层出现nan,而前面隐藏的层是正常的。
使用hdf5类型的数据为iamges,损失类型为欧式。框架就是咖啡。
求解器和网络如下。
net: "/home/ubuntu/caffe/examples/CaffeTrain/DCSCN_net.prototxt"
test_iter: 250
# Carry out testing every 500 training iterations.
test_interval: 500
# All parameters are from the cited paper above
base_lr: 0.0002
momentum: 0.9
momentum2: 0.999
# rate to a fixed value
lr_policy: "fixed"
# Display every 100 iterations
display: 100
# The maximum number of iterations
max_iter: 60000
# snapshot intermediate results
snapshot: 1500
snapshot_prefix: "/home/ubuntu/caffe/examples/CaffeTrain/DCSCN_net"
# solver mode: CPU or GPU
type: "Adam"
solver_mode: GPU
name: "DCSRCN"
layer {
name: "data"
type: "HDF5Data"
top: "data"
top: "label"
hdf5_data_param {
source: "/home/ubuntu/caffe/examples/CaffeTrain/train1.txt"
batch_size: 64
}
include: { phase: TRAIN }
}
layer {
name: "data"
type: "HDF5Data"
top: "data"
top: "label"
hdf5_data_param {
source: "/home/ubuntu/caffe/examples/CaffeTrain/test1.txt"
batch_size: 2
}
include: { phase: TEST }
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
}
param {
lr_mult: 0.1
}
convolution_param {
num_output: 32
kernel_size: 3
stride: 1
pad: 1
weight_filler {
type: "constant"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1"
type: "PReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "conv2"
type: "Convolution"
bottom: "conv1"
top: "conv2"
param {
lr_mult: 1
}
param {
lr_mult: 0.1
}
convolution_param {
num_output: 26
kernel_size: 3
stride: 1
pad: 1
weight_filler {
type: "constant"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu2"
type: "PReLU"
bottom: "conv2"
top: "conv2"
}
layer
{
name:"drop"
type:"Dropout"
bottom:"conv2"
top:"conv2"
dropout_param
{
dropout_ratio: 0.8
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "conv2"
top: "conv3"
param {
lr_mult: 1
}
param {
lr_mult: 0.1
}
convolution_param {
num_output: 22
kernel_size: 3
stride: 1
pad: 1
weight_filler {
type: "constant"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu3"
type: "PReLU"
bottom: "conv3"
top: "conv3"
}
layer
{
name:"drop"
type:"Dropout"
bottom:"conv3"
top:"conv3"
dropout_param
{
dropout_ratio: 0.8
}
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param {
lr_mult: 1
}
param {
lr_mult: 0.1
}
convolution_param {
num_output: 18
kernel_size: 3
stride: 1
pad: 1
weight_filler {
type: "constant"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu4"
type: "PReLU"
bottom: "conv4"
top: "conv4"
}
layer
{
name:"drop"
type:"Dropout"
bottom:"conv4"
top:"conv4"
dropout_param
{
dropout_ratio: 0.8
}
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param {
lr_mult: 1
}
param {
lr_mult: 0.1
}
convolution_param {
num_output: 14
kernel_size: 3
stride: 1
pad: 1
weight_filler {
type: "constant"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu5"
type: "PReLU"
bottom: "conv5"
top: "conv5"
}
layer
{
name:"drop"
type:"Dropout"
bottom:"conv5"
top:"conv5"
dropout_param
{
dropout_ratio: 0.8
}
}
layer {
name: "conv6"
type: "Convolution"
bottom: "conv5"
top: "conv6"
param {
lr_mult: 1
}
param {
lr_mult: 0.1
}
convolution_param {
num_output: 11
kernel_size: 3
stride: 1
pad: 1
weight_filler {
type: "constant"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu6"
type: "PReLU"
bottom: "conv6"
top: "conv6"
}
layer
{
name:"drop"
type:"Dropout"
bottom:"conv6"
top:"conv6"
dropout_param
{
dropout_ratio: 0.8
}
}
layer {
name: "conv7"
type: "Convolution"
bottom: "conv6"
top: "conv7"
param {
lr_mult: 1
}
param {
lr_mult: 0.1
}
convolution_param {
num_output: 8
kernel_size: 3
stride: 1
pad: 1
weight_filler {
type: "constant"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu7"
type: "PReLU"
bottom: "conv7"
top: "conv7"
}
layer
{
name:"drop"
type:"Dropout"
bottom:"conv7"
top:"conv7"
dropout_param
{
dropout_ratio: 0.8
}
}
layer {
name: "concatenate1"
bottom: "conv2"
bottom: "conv3"
bottom: "conv4"
bottom: "conv5"
bottom: "conv6"
bottom: "conv7"
top: "concatenate1"
type: "Concat"
concat_param{
axis: 1
}
}
layer {
name: "A1"
type: "Convolution"
bottom: "concatenate1"
top: "A1"
param {
lr_mult: 1
}
param {
lr_mult: 0.1
}
convolution_param {
num_output: 24
kernel_size: 1
stride: 1
pad: 0
weight_filler {
type: "constant"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "reluA1"
type: "PReLU"
bottom: "A1"
top: "A1"
}
layer
{
name:"drop"
type:"Dropout"
bottom:"A1"
top:"A1"
dropout_param
{
dropout_ratio: 0.8
}
}
layer {
name: "B1"
type: "Convolution"
bottom: "concatenate1"
top: "B1"
param {
lr_mult: 1
}
param {
lr_mult: 0.1
}
convolution_param {
num_output: 8
kernel_size: 1
stride: 1
pad: 0
weight_filler {
type: "constant"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "reluB1"
type: "PReLU"
bottom: "B1"
top: "B1"
}
layer
{
name:"drop"
type:"Dropout"
bottom:"B1"
top:"B1"
dropout_param
{
dropout_ratio: 0.8
}
}
layer {
name: "B2"
type: "Convolution"
bottom: "B1"
top: "B2"
param {
lr_mult: 1
}
param {
lr_mult: 0.1
}
convolution_param {
num_output: 8
kernel_size: 3
stride: 1
pad: 1
weight_filler {
type: "constant"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "reluB2"
type: "PReLU"
bottom: "B2"
top: "B2"
}
layer
{
name:"drop"
type:"Dropout"
bottom:"B2"
top:"B2"
dropout_param
{
dropout_ratio: 0.8
}
}
layer {
name: "concatenate2"
bottom: "A1"
bottom: "B2"
top: "concatenate2"
type: "Concat"
concat_param{
axis: 1
}
}
layer {
name: "conv8"
type: "Convolution"
bottom: "concatenate2"
top: "conv8"
param {
lr_mult: 1
}
param {
lr_mult: 0.1
}
convolution_param {
num_output: 4
kernel_size: 1
stride: 1
pad: 0
weight_filler {
type: "constant"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "slicer_label"
type: "Slice"
bottom: "label"
top: "label1"
top: "label2"
slice_param {
axis: 1
slice_point: 4
}
}
layer{
name: "diff"
type: "Eltwise"
bottom: "label1"
bottom: "label2"
top: "diff"
eltwise_param {
operation: SUM
coeff: 1
coeff: -1
}
}
layer {
name: "loss"
type: "EuclideanLoss"
bottom: "diff"
bottom: "conv8"
top: "loss"
}
当损耗层出现nan时,迭代的后面将出现相同的情况。这是日志的一部分。
I0522 10:10:04.978370 950 solver.cpp:239] Iteration 201 (9.82038 iter/s, 0.101829s/1 iters), loss = 0.412089
I0522 10:10:04.978469 950 solver.cpp:258] Train net output #0: loss = 0.412088 (* 1 = 0.412088 loss)
I0522 10:10:04.978521 950 sgd_solver.cpp:112] Iteration 201, lr = 0.002
I0522 10:10:04.980057 950 sgd_solver.cpp:99] Gradient clipping: scaling down gradients (L2 norm 1.80722 > 1) by scale factor 0.553335
I0522 10:10:04.984403 950 net.cpp:591] [Forward] Layer data, top blob data data: 0.44866
I0522 10:10:04.984561 950 net.cpp:591] [Forward] Layer data, top blob label data: 0.0258211
I0522 10:10:04.985262 950 net.cpp:591] [Forward] Layer conv1, top blob conv1 data: 0.415502
I0522 10:10:04.985370 950 net.cpp:603] [Forward] Layer conv1, param blob 0 data: 0.374245
I0522 10:10:04.985461 950 net.cpp:603] [Forward] Layer conv1, param blob 1 data: 0.00277251
I0522 10:10:05.029992 950 net.cpp:591] [Forward] Layer relu1, top blob conv1 data: 0.167436
I0522 10:10:05.030158 950 net.cpp:603] [Forward] Layer relu1, param blob 0 data: 0.230917
I0522 10:10:05.030987 950 net.cpp:591] [Forward] Layer conv2, top blob conv2 data: 0.213457
I0522 10:10:05.031092 950 net.cpp:603] [Forward] Layer conv2, param blob 0 data: 0.065087
I0522 10:10:05.031244 950 net.cpp:603] [Forward] Layer conv2, param blob 1 data: 0.00234184
I0522 10:10:05.031761 950 net.cpp:591] [Forward] Layer relu2, top blob conv2 data: 0.0338422
I0522 10:10:05.031859 950 net.cpp:603] [Forward] Layer relu2, param blob 0 data: 0.15821
I0522 10:10:05.032014 950 net.cpp:591] [Forward] Layer conv2_relu2_0_split, top blob conv2_relu2_0_split_0 data: 0.0338422
I0522 10:10:05.032164 950 net.cpp:591] [Forward] Layer conv2_relu2_0_split, top blob conv2_relu2_0_split_1 data: 0.0338422
I0522 10:10:05.032908 950 net.cpp:591] [Forward] Layer conv3, top blob conv3 data: 0.013239
I0522 10:10:05.033012 950 net.cpp:603] [Forward] Layer conv3, param blob 0 data: 0.0709371
I0522 10:10:05.033102 950 net.cpp:603] [Forward] Layer conv3, param blob 1 data: 0.00266559
I0522 10:10:05.033550 950 net.cpp:591] [Forward] Layer relu3, top blob conv3 data: 0.00230486
I0522 10:10:05.033643 950 net.cpp:603] [Forward] Layer relu3, param blob 0 data: 0.167923
I0522 10:10:05.034057 950 net.cpp:591] [Forward] Layer drop, top blob conv3 data: 0.00230195
I0522 10:10:05.034206 950 net.cpp:591] [Forward] Layer conv3_drop_0_split, top blob conv3_drop_0_split_0 data: 0.00230195
I0522 10:10:05.034346 950 net.cpp:591] [Forward] Layer conv3_drop_0_split, top blob conv3_drop_0_split_1 data: 0.00230195
I0522 10:10:05.034997 950 net.cpp:591] [Forward] Layer conv4, top blob conv4 data: 0.00917583
I0522 10:10:05.035099 950 net.cpp:603] [Forward] Layer conv4, param blob 0 data: 0.0726901
I0522 10:10:05.035188 950 net.cpp:603] [Forward] Layer conv4, param blob 1 data: 0.00386205
I0522 10:10:05.035567 950 net.cpp:591] [Forward] Layer relu4, top blob conv4 data: 0.00157258
I0522 10:10:05.035658 950 net.cpp:603] [Forward] Layer relu4, param blob 0 data: 0.169566
I0522 10:10:05.035984 950 net.cpp:591] [Forward] Layer drop, top blob conv4 data: 0.00157394
I0522 10:10:05.036109 950 net.cpp:591] [Forward] Layer conv4_drop_0_split, top blob conv4_drop_0_split_0 data: 0.00157394
I0522 10:10:05.036231 950 net.cpp:591] [Forward] Layer conv4_drop_0_split, top blob conv4_drop_0_split_1 data: 0.00157394
I0522 10:10:05.036847 950 net.cpp:591] [Forward] Layer conv5, top blob conv5 data: 0.00580002
I0522 10:10:05.036949 950 net.cpp:603] [Forward] Layer conv5, param blob 0 data: 0.0789717
I0522 10:10:05.037036 950 net.cpp:603] [Forward] Layer conv5, param blob 1 data: 0.00541544
I0522 10:10:05.037344 950 net.cpp:591] [Forward] Layer relu5, top blob conv5 data: 0.0010077
I0522 10:10:05.037436 950 net.cpp:603] [Forward] Layer relu5, param blob 0 data: 0.171593
I0522 10:10:05.037714 950 net.cpp:591] [Forward] Layer drop, top blob conv5 data: 0.00100811
I0522 10:10:05.037840 950 net.cpp:591] [Forward] Layer conv5_drop_0_split, top blob conv5_drop_0_split_0 data: 0.00100811
I0522 10:10:05.037955 950 net.cpp:591] [Forward] Layer conv5_drop_0_split, top blob conv5_drop_0_split_1 data: 0.00100811
I0522 10:10:05.038496 950 net.cpp:591] [Forward] Layer conv6, top blob conv6 data: 0.00340542
I0522 10:10:05.038599 950 net.cpp:603] [Forward] Layer conv6, param blob 0 data: 0.0900255
I0522 10:10:05.038691 950 net.cpp:603] [Forward] Layer conv6, param blob 1 data: 0.00595053
I0522 10:10:05.038954 950 net.cpp:591] [Forward] Layer relu6, top blob conv6 data: 0.000693495
I0522 10:10:05.039048 950 net.cpp:603] [Forward] Layer relu6, param blob 0 data: 0.196659
I0522 10:10:05.039283 950 net.cpp:591] [Forward] Layer drop, top blob conv6 data: 0.000695216
I0522 10:10:05.039396 950 net.cpp:591] [Forward] Layer conv6_drop_0_split, top blob conv6_drop_0_split_0 data: 0.000695216
I0522 10:10:05.039502 950 net.cpp:591] [Forward] Layer conv6_drop_0_split, top blob conv6_drop_0_split_1 data: 0.000695216
I0522 10:10:05.040009 950 net.cpp:591] [Forward] Layer conv7, top blob conv7 data: 0.00464197
I0522 10:10:05.040110 950 net.cpp:603] [Forward] Layer conv7, param blob 0 data: 0.100864
I0522 10:10:05.040400 950 net.cpp:603] [Forward] Layer conv7, param blob 1 data: 0.00521081
I0522 10:10:05.040623 950 net.cpp:591] [Forward] Layer relu7, top blob conv7 data: 0.000884805
I0522 10:10:05.040717 950 net.cpp:603] [Forward] Layer relu7, param blob 0 data: 0.190243
I0522 10:10:05.040915 950 net.cpp:591] [Forward] Layer drop, top blob conv7 data: 0.000885196
I0522 10:10:05.041829 950 net.cpp:591] [Forward] Layer concatenate1, top blob concatenate1 data: 0.00997691
I0522 10:10:05.042186 950 net.cpp:591] [Forward] Layer concatenate1_concatenate1_0_split, top blob concatenate1_concatenate1_0_split_0 data: 0.00997691
I0522 10:10:05.042533 950 net.cpp:591] [Forward] Layer concatenate1_concatenate1_0_split, top blob concatenate1_concatenate1_0_split_1 data: 0.00997691
I0522 10:10:05.043359 950 net.cpp:591] [Forward] Layer A1, top blob A1 data: 0.00780515
I0522 10:10:05.043488 950 net.cpp:603] [Forward] Layer A1, param blob 0 data: 0.096412
I0522 10:10:05.043576 950 net.cpp:603] [Forward] Layer A1, param blob 1 data: 0.00323188
I0522 10:10:05.044054 950 net.cpp:591] [Forward] Layer reluA1, top blob A1 data: 0.000746234
I0522 10:10:05.044150 950 net.cpp:603] [Forward] Layer reluA1, param blob 0 data: 0.0983066
I0522 10:10:05.044556 950 net.cpp:591] [Forward] Layer drop, top blob A1 data: 0.00074668
I0522 10:10:05.045150 950 net.cpp:591] [Forward] Layer B1, top blob B1 data: 0.00828996
I0522 10:10:05.045250 950 net.cpp:603] [Forward] Layer B1, param blob 0 data: 0.0985074
I0522 10:10:05.045353 950 net.cpp:603] [Forward] Layer B1, param blob 1 data: 0.00344047
I0522 10:10:05.045567 950 net.cpp:591] [Forward] Layer reluB1, top blob B1 data: 0.00125219
I0522 10:10:05.045658 950 net.cpp:603] [Forward] Layer reluB1, param blob 0 data: 0.147279
I0522 10:10:05.045874 950 net.cpp:591] [Forward] Layer drop, top blob B1 data: 0.00125118
I0522 10:10:05.046331 950 net.cpp:591] [Forward] Layer B2, top blob B2 data: 0.00503351
I0522 10:10:05.046430 950 net.cpp:603] [Forward] Layer B2, param blob 0 data: 0.106241
I0522 10:10:05.046519 950 net.cpp:603] [Forward] Layer B2, param blob 1 data: 0.00502009
I0522 10:10:05.046782 950 net.cpp:591] [Forward] Layer reluB2, top blob B2 data: 0.000425956
I0522 10:10:05.046880 950 net.cpp:603] [Forward] Layer reluB2, param blob 0 data: 0.0860905
I0522 10:10:05.047076 950 net.cpp:591] [Forward] Layer drop, top blob B2 data: 0.000426802
I0522 10:10:05.047433 950 net.cpp:591] [Forward] Layer concatenate2, top blob concatenate2 data: 0.000666711
I0522 10:10:05.047777 950 net.cpp:591] [Forward] Layer conv8, top blob conv8 data: 0.000599165
I0522 10:10:05.047876 950 net.cpp:603] [Forward] Layer conv8, param blob 0 data: 0.132703
I0522 10:10:05.047969 950 net.cpp:603] [Forward] Layer conv8, param blob 1 data: 0.000346347
I0522 10:10:05.049504 950 net.cpp:591] [Forward] Layer loss, top blob loss data: nan
I0522 10:10:05.050093 950 net.cpp:619] [Backward] Layer loss, bottom blob conv8 diff: 0.000404195
I0522 10:10:05.051265 950 net.cpp:619] [Backward] Layer conv8, bottom blob concatenate2 diff: 0.000129882
I0522 10:10:05.051373 950 net.cpp:630] [Backward] Layer conv8, param blob 0 diff: 0.000461379
I0522 10:10:05.051470 950 net.cpp:630] [Backward] Layer conv8, param blob 1 diff: 0.572021
I0522 10:10:05.051812 950 net.cpp:619] [Backward] Layer concatenate2, bottom blob A1 diff: 0.00012783
I0522 10:10:05.051916 950 net.cpp:619] [Backward] Layer concatenate2, bottom blob B2 diff: 0.000136037
I0522 10:10:05.052081 950 net.cpp:619] [Backward] Layer drop, bottom blob B2 diff: 0.000135995
I0522 10:10:05.052304 950 net.cpp:619] [Backward] Layer reluB2, bottom blob B2 diff: 1.31521e-05
I0522 10:10:05.052402 950 net.cpp:630] [Backward] Layer reluB2, param blob 0 diff: 0.00102617
I0522 10:10:05.053320 950 net.cpp:619] [Backward] Layer B2, bottom blob B1 diff: 2.517e-05
I0522 10:10:05.053484 950 net.cpp:630] [Backward] Layer B2, param blob 0 diff: 2.97466e-05
I0522 10:10:05.053581 950 net.cpp:630] [Backward] Layer B2, param blob 1 diff: 0.0198924
I0522 10:10:05.053745 950 net.cpp:619] [Backward] Layer drop, bottom blob B1 diff: 2.53463e-05
I0522 10:10:05.053974 950 net.cpp:619] [Backward] Layer reluB1, bottom blob B1 diff: 4.42646e-06
I0522 10:10:05.054075 950 net.cpp:630] [Backward] Layer reluB1, param blob 0 diff: 0.000282126
I0522 10:10:05.055465 950 net.cpp:619] [Backward] Layer B1, bottom blob concatenate1_concatenate1_0_split_1 diff: 2.11766e-06
I0522 10:10:05.055578 950 net.cpp:630] [Backward] Layer B1, param blob 0 diff: 5.33014e-05
I0522 10:10:05.055784 950 net.cpp:630] [Backward] Layer B1, param blob 1 diff: 0.0042211
I0522 10:10:05.056212 950 net.cpp:619] [Backward] Layer drop, bottom blob A1 diff: 0.000128165
I0522 10:10:05.056720 950 net.cpp:619] [Backward] Layer reluA1, bottom blob A1 diff: 1.4212e-05
I0522 10:10:05.056843 950 net.cpp:630] [Backward] Layer reluA1, param blob 0 diff: 0.00145511
I0522 10:10:05.058341 950 net.cpp:619] [Backward] Layer A1, bottom blob concatenate1_concatenate1_0_split_0 diff: 1.19995e-05
I0522 10:10:05.058472 950 net.cpp:630] [Backward] Layer A1, param blob 0 diff: 0.000175081
I0522 10:10:05.058590 950 net.cpp:630] [Backward] Layer A1, param blob 1 diff: 0.0165867
I0522 10:10:05.059746 950 net.cpp:619] [Backward] Layer concatenate1_concatenate1_0_split, bottom blob concatenate1 diff: 1.24789e-05
I0522 10:10:05.060521 950 net.cpp:619] [Backward] Layer concatenate1, bottom blob conv2_relu2_0_split_1 diff: 1.26877e-05
I0522 10:10:05.060714 950 net.cpp:619] [Backward] Layer concatenate1, bottom blob conv3_drop_0_split_1 diff: 1.22685e-05
I0522 10:10:05.060895 950 net.cpp:619] [Backward] Layer concatenate1, bottom blob conv4_drop_0_split_1 diff: 1.26432e-05
I0522 10:10:05.061036 950 net.cpp:619] [Backward] Layer concatenate1, bottom blob conv5_drop_0_split_1 diff: 1.21001e-05
I0522 10:10:05.061169 950 net.cpp:619] [Backward] Layer concatenate1, bottom blob conv6_drop_0_split_1 diff: 1.27764e-05
I0522 10:10:05.061295 950 net.cpp:619] [Backward] Layer concatenate1, bottom blob conv7 diff: 1.22628e-05
I0522 10:10:05.061476 950 net.cpp:619] [Backward] Layer drop, bottom blob conv7 diff: 1.23225e-05
I0522 10:10:05.061727 950 net.cpp:619] [Backward] Layer relu7, bottom blob conv7 diff: 2.36587e-06
I0522 10:10:05.061851 950 net.cpp:630] [Backward] Layer relu7, param blob 0 diff: 6.1144e-05
I0522 10:10:05.062788 950 net.cpp:619] [Backward] Layer conv7, bottom blob conv6_drop_0_split_0 diff: 4.13267e-06
I0522 10:10:05.062914 950 net.cpp:630] [Backward] Layer conv7, param blob 0 diff: 2.07931e-06
I0522 10:10:05.063030 950 net.cpp:630] [Backward] Layer conv7, param blob 1 diff: 0.0026707
I0522 10:10:05.063244 950 net.cpp:619] [Backward] Layer conv6_drop_0_split, bottom blob conv6 diff: 1.36793e-05
I0522 10:10:05.063462 950 net.cpp:619] [Backward] Layer drop, bottom blob conv6 diff: 1.38275e-05
I0522 10:10:05.063757 950 net.cpp:619] [Backward] Layer relu6, bottom blob conv6 diff: 3.1853e-06
I0522 10:10:05.063877 950 net.cpp:630] [Backward] Layer relu6, param blob 0 diff: 4.92523e-05
I0522 10:10:05.064877 950 net.cpp:619] [Backward] Layer conv6, bottom blob conv5_drop_0_split_0 diff: 7.0532e-06
I0522 10:10:05.065002 950 net.cpp:630] [Backward] Layer conv6, param blob 0 diff: 4.40123e-06
I0522 10:10:05.065122 950 net.cpp:630] [Backward] Layer conv6, param blob 1 diff: 0.00308829
I0522 10:10:05.065369 950 net.cpp:619] [Backward] Layer conv5_drop_0_split, bottom blob conv5 diff: 1.46071e-05
I0522 10:10:05.065619 950 net.cpp:619] [Backward] Layer drop, bottom blob conv5 diff: 1.48998e-05
I0522 10:10:05.065992 950 net.cpp:619] [Backward] Layer relu5, bottom blob conv5 diff: 2.80906e-06
I0522 10:10:05.066118 950 net.cpp:630] [Backward] Layer relu5, param blob 0 diff: 8.71506e-05
I0522 10:10:05.067418 950 net.cpp:619] [Backward] Layer conv5, bottom blob conv4_drop_0_split_0 diff: 5.48825e-06
I0522 10:10:05.067548 950 net.cpp:630] [Backward] Layer conv5, param blob 0 diff: 7.13034e-06
I0522 10:10:05.067664 950 net.cpp:630] [Backward] Layer conv5, param blob 1 diff: 0.00280526
I0522 10:10:05.067955 950 net.cpp:619] [Backward] Layer conv4_drop_0_split, bottom blob conv4 diff: 1.41262e-05
I0522 10:10:05.068244 950 net.cpp:619] [Backward] Layer drop, bottom blob conv4 diff: 1.41677e-05
I0522 10:10:05.068647 950 net.cpp:619] [Backward] Layer relu4, bottom blob conv4 diff: 2.68117e-06
I0522 10:10:05.068766 950 net.cpp:630] [Backward] Layer relu4, param blob 0 diff: 0.000180559
I0522 10:10:05.070330 950 net.cpp:619] [Backward] Layer conv4, bottom blob conv3_drop_0_split_0 diff: 5.59543e-06
I0522 10:10:05.070489 950 net.cpp:630] [Backward] Layer conv4, param blob 0 diff: 1.33325e-05
I0522 10:10:05.070636 950 net.cpp:630] [Backward] Layer conv4, param blob 1 diff: 0.00274354
I0522 10:10:05.070966 950 net.cpp:619] [Backward] Layer conv3_drop_0_split, bottom blob conv3 diff: 1.38212e-05
I0522 10:10:05.071302 950 net.cpp:619] [Backward] Layer drop, bottom blob conv3 diff: 1.3831e-05
I0522 10:10:05.071768 950 net.cpp:619] [Backward] Layer relu3, bottom blob conv3 diff: 2.75353e-06
I0522 10:10:05.071887 950 net.cpp:630] [Backward] Layer relu3, param blob 0 diff: 0.000372754
I0522 10:10:05.073459 950 net.cpp:619] [Backward] Layer conv3, bottom blob conv2_relu2_0_split_0 diff: 6.72983e-06
I0522 10:10:05.073590 950 net.cpp:630] [Backward] Layer conv3, param blob 0 diff: 0.000126346
I0522 10:10:05.073721 950 net.cpp:630] [Backward] Layer conv3, param blob 1 diff: 0.00375996
I0522 10:10:05.074102 950 net.cpp:619] [Backward] Layer conv2_relu2_0_split, bottom blob conv2 diff: 1.49227e-05
I0522 10:10:05.074637 950 net.cpp:619] [Backward] Layer relu2, bottom blob conv2 diff: 2.39557e-06
I0522 10:10:05.074760 950 net.cpp:630] [Backward] Layer relu2, param blob 0 diff: 0.00293634
I0522 10:10:05.076663 950 net.cpp:619] [Backward] Layer conv2, bottom blob conv1 diff: 3.39956e-06
I0522 10:10:05.076791 950 net.cpp:630] [Backward] Layer conv2, param blob 0 diff: 0.000364487
I0522 10:10:05.076907 950 net.cpp:630] [Backward] Layer conv2, param blob 1 diff: 0.00226531
I0522 10:10:05.077531 950 net.cpp:619] [Backward] Layer relu1, bottom blob conv1 diff: 1.472e-06
I0522 10:10:05.077652 950 net.cpp:630] [Backward] Layer relu1, param blob 0 diff: 0.000822316
I0522 10:10:05.078137 950 net.cpp:630] [Backward] Layer conv1, param blob 0 diff: 0.000404451
I0522 10:10:05.078263 950 net.cpp:630] [Backward] Layer conv1, param blob 1 diff: 0.00096731
E0522 10:10:05.084373 950 net.cpp:719] [Backward] All net params (data, diff): L1 norm = (2017.62, 7.4594); L2 norm = (17.3085, 1.26868)
I0522 10:10:05.084547 950 solver.cpp:239] Iteration 202 (9.42539 iter/s, 0.106096s/1 iters), loss = nan
I0522 10:10:05.084625 950 solver.cpp:258] Train net output #0: loss = nan (* 1 = nan loss)
I0522 10:10:05.084668 950 sgd_solver.cpp:112] Iteration 202, lr = 0.002
我现在非常困惑,感谢您的帮助。