酸洗错误PySpark

时间:2016-06-22 11:21:56

标签: python apache-spark pyspark

我正在编写一个火花流应用程序来从s3流式传输数据,进行一些聚合并引发适当的错误。因为我一直收到这个错误而陷入困境:

Traceback (most recent call last):
  File "/home/plivo/Downloads/spark-1.4.0-bin-hadoop2.4/python/lib/pyspark.zip/pyspark/streaming/util.py", line 59, in call
    return r._jrdd
  File "/home/plivo/Downloads/spark-1.4.0-bin-hadoop2.4/python/lib/pyspark.zip/pyspark/rdd.py", line 2351, in _jrdd
    pickled_cmd, bvars, env, includes = _prepare_for_python_RDD(self.ctx, command, self)
  File "/home/plivo/Downloads/spark-1.4.0-bin-hadoop2.4/python/lib/pyspark.zip/pyspark/rdd.py", line 2271, in _prepare_for_python_RDD
    pickled_command = ser.dumps(command)
  File "/home/plivo/Downloads/spark-1.4.0-bin-hadoop2.4/python/lib/pyspark.zip/pyspark/serializers.py", line 427, in dumps
    return cloudpickle.dumps(obj, 2)
  File "/home/plivo/Downloads/spark-1.4.0-bin-hadoop2.4/python/lib/pyspark.zip/pyspark/cloudpickle.py", line 622, in dumps
    cp.dump(obj)
  File "/home/plivo/Downloads/spark-1.4.0-bin-hadoop2.4/python/lib/pyspark.zip/pyspark/cloudpickle.py", line 111, in dump
    raise pickle.PicklingError(msg)
PicklingError: Could not pickle object as excessively deep recursion required.

以下是我正在尝试的代码

import time

from pyspark import SparkContext
from pyspark.streaming import StreamingContext


if __name__ == '__main__':

    limit = {'111111':200,'222222':100,'333333':100,'444444':100,'555555':100,   '666666':100,}

    current_value =  { str(x)*6 : [ int(time.time())/60, 0  ] for x in range(1,  7) }

    def check(x):
       response = client.put_object(Key = 'key', Body = 'body', Bucket = 'bucket')
       return True      

    sc = SparkContext('local[2]', 's3_streaming')
    sc._jsc.hadoopConfiguration().set("fs.s3n.awsAccessKeyId","<key>")
    sc._jsc.hadoopConfiguration().set("fs.s3n.awsSecretAccessKey","<key>")

    ssc = StreamingContext(sc, 10)
    rdd = ssc.textFileStream('s3n://sparktest01')

    pairs = rdd.map(lambda x: (x.split(',')[0], int(x.split(',')[3])))
    aggr = pairs.reduceByKey(lambda x,y: int(x) + int(y))
    final = aggr.map(lambda x: (x, check(x) ) )
    final.pprint()


    ssc.start()
    ssc.awaitTermination()

0 个答案:

没有答案