鉴于任意形状的两个$isEvenNumber = function($number) {
return $number % 2 == 0;
}
$numbers = toms(33);
$filtered_numbers = array_filter($numbers, $isEvenNumber);
var_dump($filtered_numbers);
个对象numpy.ndarray
和A
,我想计算一个B
numpy.ndarray
的属性所有C
C[i] == np.dot(A[i], B[i])
。我怎么能这样做?
示例1:i
和A.shape==(2,3,4)
,那么我们应该B.shape==(2,4,5)
。
示例2:C.shape==(2,3,5)
和A.shape==(2,3,4)
,那么我们应该B.shape==(2,4)
。
答案 0 :(得分:4)
这是一个使用某些reshaping
和np.einsum
覆盖各种情况/任意形状的通用解决方案。 einsum
在这里有所帮助,因为我们需要沿第一轴对齐并沿输入数组的最后一轴减少。实现看起来像这样 -
def dotprod_axis0(A,B):
N,nA,nB = A.shape[0], A.shape[-1], B.shape[1]
Ar = A.reshape(N,-1,nA)
Br = B.reshape(N,nB,-1)
return np.squeeze(np.einsum('ijk,ikl->ijl',Ar,Br))
<强>予。答:2D,B:2D
In [119]: # Inputs
...: A = np.random.randint(0,9,(3,4))
...: B = np.random.randint(0,9,(3,4))
...:
In [120]: for i in range(A.shape[0]):
...: print np.dot(A[i], B[i])
...:
33
86
48
In [121]: dotprod_axis0(A,B)
Out[121]: array([33, 86, 48])
<强> II。答:3D,B:3D
In [122]: # Inputs
...: A = np.random.randint(0,9,(2,3,4))
...: B = np.random.randint(0,9,(2,4,5))
...:
In [123]: for i in range(A.shape[0]):
...: print np.dot(A[i], B[i])
...:
[[ 74 70 53 118 43]
[ 47 43 29 95 30]
[ 41 37 26 23 15]]
[[ 50 86 33 35 82]
[ 78 126 40 124 140]
[ 67 88 35 47 83]]
In [124]: dotprod_axis0(A,B)
Out[124]:
array([[[ 74, 70, 53, 118, 43],
[ 47, 43, 29, 95, 30],
[ 41, 37, 26, 23, 15]],
[[ 50, 86, 33, 35, 82],
[ 78, 126, 40, 124, 140],
[ 67, 88, 35, 47, 83]]])
<强> III。答:3D,B:2D
In [125]: # Inputs
...: A = np.random.randint(0,9,(2,3,4))
...: B = np.random.randint(0,9,(2,4))
...:
In [126]: for i in range(A.shape[0]):
...: print np.dot(A[i], B[i])
...:
[ 87 105 53]
[152 135 120]
In [127]: dotprod_axis0(A,B)
Out[127]:
array([[ 87, 105, 53],
[152, 135, 120]])
<强> IV。答:2D,B:3D
In [128]: # Inputs
...: A = np.random.randint(0,9,(2,4))
...: B = np.random.randint(0,9,(2,4,5))
...:
In [129]: for i in range(A.shape[0]):
...: print np.dot(A[i], B[i])
...:
[76 93 31 75 16]
[ 33 98 49 117 111]
In [130]: dotprod_axis0(A,B)
Out[130]:
array([[ 76, 93, 31, 75, 16],
[ 33, 98, 49, 117, 111]])
答案 1 :(得分:0)
假设你想要dot
的普通矩阵乘法(不是说,矩阵向量或奇怪的废话dot
对更高维度),那么你可以使用最新的NumPy版本(1.10+)
C = numpy.matmul(A, B)
和足够新的Python版本(3.5+)允许你将其写为
C = A @ B
假设你的NumPy也是最近的。