调试内置pow()
函数的输出需要一天的时间。我的编译器和在线编译器之间的输出不同。这是一个很长的故事。我写了下面的Minimal, Complete, and Verifiable example重现了这种情况。
#include <bits/stdc++.h>
using namespace std;
// This function just prints the binary representation as it is in memory
// A modified version of Lightness Races in Orbit's code given here: https://stackoverflow.com/a/37861479/3555000
// I thank Lightness Races in Orbit for the contribution
void print_binary(long double y)
{
const long double x = y;
unsigned char a[sizeof(long double)];
copy(
reinterpret_cast<const unsigned char*>(&x),
reinterpret_cast<const unsigned char*>(&x) + sizeof(long double),
&a[0]
);
for (auto el : a)
{
bitset<8>k(el);
cout << k.to_string() ;
}
cout << endl;
}
int main()
{
int a[] = {20,29,31}, res=0; //Took three numbers and initialized the result
for(int i = 0; i<3; i++)
{
cout<<"i = "<<i<< ", a["<<i<< "] = "<<a[i]<<"\npow(" << a[i] <<","<<i+1 << "):\nBinary: ";
long double temp = pow(a[i],i+1);
print_binary(temp);
res+=temp;
cout<<setprecision(50)<<fixed<< "Decimal: " <<temp <<", Result = "<<res<<endl;
}
return 0;
}
i = 0, a[0] = 20
pow(20,1):
Binary: 000000000000000000000000000000000000000000000000000000001010000000000011010000000110100000000000
Decimal: 20.00000000000000000000000000000000000000000000000000, Result = 20
i = 1, a[1] = 29
pow(29,2):
Binary: 111111011111111111111111111111111111111111111111001111111101001000001000010000000110100000000000
Decimal: 840.99999999999999983346654630622651893645524978637695, Result = 860
i = 2, a[2] = 31
pow(31,3):
Binary: 111111101111111111111111111111111111111111111111101111011110100000001101010000000110100000000000
Decimal: 29790.99999999999999644728632119949907064437866210937500, Result = 30650
i = 0, a[0] = 20
pow(20,1):
Binary: 000000000000000000000000000000000000000000000000000000001010000000000011010000000000000000000000
Decimal: 20.00000000000000000000000000000000000000000000000000, Result = 20
i = 1, a[1] = 29
pow(29,2):
Binary: 000000000000000000000000000000000000000000000000010000001101001000001000010000000000000000000000
Decimal: 841.00000000000000000000000000000000000000000000000000, Result = 861
i = 2, a[2] = 31
pow(31,3):
Binary: 000000000000000000000000000000000000000000000000101111101110100000001101010000000000000000000000
Decimal: 29791.00000000000000000000000000000000000000000000000000, Result = 30652
我认为pow()
函数有时会提供错误的输出,但它的实现在所有编译器中都是相同的。因为我认为它有一个既定的标准。
pow()
函数的实现是否因平台或编译器而异?pow()
功能的既定标准?答案 0 :(得分:2)
许多因素会影响浮点运算的结果,例如舍入,运算顺序。即使使用相同的pow()
代码,不同的硬件,不同的编译器甚至不同的编译选项也可能会产生不同的结果,这就是二元比较无意义的原因。
std::pow
和浮点数的标准。
http://en.cppreference.com/w/cpp/numeric/math/pow
https://en.m.wikipedia.org/wiki/IEEE_floating_point
但正如一些问题评论所指出的那样,标准并未指定所有内容,编译器/代码有时甚至不遵循标准。大多数时候,它是精确度和速度之间的平衡。
数值误差/浮点精度误差/精度误差 - 不确定。未定义的行为通常是意外的,远离正确。但是来自不同pow()的所有结果都是正确的。
答案 1 :(得分:-3)
我要指出的第一件事是你使用res打印出结果,你也在循环中多次添加结果,这意味着第二次迭代你的结果是错误的。
将res = 0移动到for循环中。