我在以下数据框中对df.sort_values('credit', ascending=False, inplace=True)
进行排序的方法是使用sort_values()函数(我也尝试过sort()):
i credit m reg_date b id
----------------------------------------------------------------------
238 0 4600000.00 0 2014-04-14 False 102214
127 0 4600000.00 0 2014-12-30 False 159479
13 0 16800000.00 0 2015-01-12 False 163503
248 0 16720000.00 0 2012-11-11 False 5116
问题在于学分如下所示:
False
升序为4600000.00
,这就是16800000.00
在其他学分之前的原因。但这不是我想要的。我想根据价值观进行排序。因此,上面的示例16720000.00
和4600000.00
应该在120 0 16708000.00 0 2013-12-17 False 51433
248 0 16720000.00 0 2012-11-11 False 5116
13 0 16800000.00 0 2015-01-12 False 163503
21 0 4634000.00 0 2014-12-29 False 159239
136 0 4650000.00 0 2012-11-07 False 4701
.. ... ... ... ... ... ...
231 0 7715000.00 0 2014-02-15 False 83936
182 0 7750000.00 0 2015-07-13 False 201584
之前。如何对这个Dataframe进行非词汇排序?
修改-1:
数据不仅如此,还可以包含:
maritalStatusOptions = [
{"option": "Marital Status" },
{"option": "Divorced" },
{"option": "Married/Domestic Partner" },
{"option": "Seperated" },
{"option": "MI" },
{"option": "Single" },
{"option": "Widowed" }
];
答案 0 :(得分:1)
您可以将列分类为float
类型,并使用索引对原始索引进行切片
在你的情况下:
import pandas as pd
from StringIO import StringIO
text = """136 0 4650000.00 0 2012-11-07 False 4701
231 0 7715000.00 0 2014-02-15 False 83936
13 0 16800000.00 0 2015-01-12 False 163503
120 0 16708000.00 0 2013-12-17 False 51433
248 0 16720000.00 0 2012-11-11 False 5116
21 0 4634000.00 0 2014-12-29 False 159239
182 0 7750000.00 0 2015-07-13 False 201584
"""
df = pd.read_csv(StringIO(text), delim_whitespace=True,
header=None, index_col=0,
names=['i', 'credit', 'm', 'reg_date', 'b', 'id'])
print df.loc[df.credit.astype(float).sort_values(ascending=False).index]
i credit m reg_date b id
13 0 16800000.0 0 2015-01-12 False 163503
248 0 16720000.0 0 2012-11-11 False 5116
120 0 16708000.0 0 2013-12-17 False 51433
182 0 7750000.0 0 2015-07-13 False 201584
231 0 7715000.0 0 2014-02-15 False 83936
136 0 4650000.0 0 2012-11-07 False 4701
21 0 4634000.0 0 2014-12-29 False 159239