Java游戏引擎:Raycasted墙是空心的,破碎的,看起来像粪便

时间:2016-06-14 05:18:21

标签: java arrays algorithm raycasting 2.5d

enter image description here我正在尝试编写一个光线投射引擎。

我研究了在http://www.instructables.com/id/Making-a-Basic-3D-Engine-in-Java/找到的教程和在http://lodev.org/cgtutor/raycasting.html找到的C ++光线投射教程,经过几次尝试后,我得到了正确方向投射的光线,因此获得了(半)工作输出。

我让墙壁出现在世界上,我加入了游戏中的动作,我能够四处走动。然而,墙壁(应该是一个立方体)只显示立方体的两面,无论我在世界面对的方向。因此,它不是显示一个立方体,而是从实际上最靠近相机的立方体侧面跳跃,而是显示立方体的远侧,而这仅在我面向原点时发生(0,0 )我的地图存储在的2d数组中。此错误显示在上图中。

我认为这个错误是由于整数舍入和光线检测到的墙壁的位置向下舍入,但我似乎无法想出一个解决方案。我实际上是为每个像素列投射两条光线,一条用于检测垂直墙壁,另一条用于检测水平墙壁。计算并比较每个的距离,然后绘制最短的距离墙。

我的问题是如何正确绘制墙壁

 public class Screen {

     //VARIABLE DECLARATIONS
     //-----------------------
     int FOV = 60; //field of view in degrees
     int screenwidth = 800; //variable holds the vertical resolution of the screen
     int screenheight = 600; //variable holds the horizontal resolution of the screen
     double camx; //cameras x coordinate
     double camy; //cameras y coordinate
     double camAngle; //direction of camera in degrees
     double rayAngle; //angle of ray being cast in radians
     int x = 0; //holds the current pixel column being looped through
     double IncrementAngle = (double)FOV / (double)screenwidth; //calculates the change in the rays angle for each horizontal pixel

     int[][] map;  //stores the 2d map that represents the 3d world of the game

     public Screen() {

     public int[] update(int[] pixels, int[][] m, double ca, double cx, double cy, int fov) {

         FOV = fov;
         IncrementAngle = (double)FOV / (double)screenwidth; //calculates the change in the rays angle for each horizontal pixel

         camAngle = ca;
         camx = cx;
         camy = cy;

         map = m;

         int x = 0;

         Color c; //declares new color

         //fills background
         for (int n = 0; n < pixels.length; n++) pixels[n] = Color.BLACK.getRGB();

         for (double ray = (double)(FOV / 2); ray > (double)(-FOV / 2); ray -= IncrementAngle) {
             double vdist = Integer.MAX_VALUE, hdist  = Integer.MAX_VALUE;
             double perpendicularDist = 0;
             double theta;
             double lineheight;
             int drawstart, drawend;
             int side = 0;

             int r = 0, g = 0, b = 0, a = 0; //variables that determinbe what colours will be drawn (red, green, blue, and alpha for
 transparency)

             rayAngle = Math.toRadians(camAngle + ray);

             try {
                 vdist = VertDist(rayAngle);
             }
             catch (ArrayIndexOutOfBoundsException e) {}
             try {
                 hdist = HorDist(rayAngle);
             }
             catch (ArrayIndexOutOfBoundsException e) {}

             theta = Math.abs(rayAngle - Math.toRadians(camAngle)); //angle difference between the ray being cast and the cameras
 direction

             if (hdist < vdist) {
                 perpendicularDist = hdist * Math.cos(theta);
                 lastSide = 0;
                 r = Color.GRAY.getRed();
                 g = Color.GRAY.getGreen();
                 b = Color.GRAY.getBlue();
                 a = Color.GRAY.getAlpha();
             }
             else {
                 perpendicularDist = vdist * Math.cos(theta);
                 lastSide = 1;
                 r = Color.DARK_GRAY.getRed();
                 g = Color.DARK_GRAY.getGreen();
                 b = Color.DARK_GRAY.getBlue();
                 a = Color.DARK_GRAY.getAlpha();
             }
             //creates pulsating effect with wall colours
             r -= pulse;
             g += pulse * 2;
             b -= pulse;

             c = new Color(r, g, b, a);

             lineheight = screenheight / perpendicularDist;

             drawstart = (int)(-lineheight / 2) + (screenheight / 2);
             drawend = (int)(lineheight / 2) + (screenheight / 2);

             if (drawstart < 0) drawstart = 0;
             if (drawend >= screenheight) drawend = screenheight - 1;

             for (int y = drawstart; y < drawend; y++) {
                 pixels[x + (y * screenwidth)] = c.getRGB();
             }

             if (x < screenwidth) x++;
             else x = 0;
         }

         //returns pixels array to main class to be shown to screen
         return pixels;
     }

     public double VertDist(double angle) {
         double rx = 0, ry = 0;
         double stepX = 0, stepY = 0;
         double FstepX = 0, FstepY = 0;
         double Fxcomp = 0, Fycomp = 0;
         double xcomp = 0, ycomp = 0;
         double mapx = camx, mapy = camy;
         boolean hit = false;
         double obliqueDist = 0;

             rx = Math.cos(angle);
             ry = Math.sin(angle);

             if (rx < 0) {
                 stepX = -1;
                 FstepX = (camx - ((int)camx)) * stepX;
             }
             else if (rx > 0) {
                 stepX = 1;
                 FstepX = ((int)(camx + 1)) - camx;
             }

             ycomp = (stepX * Math.tan(angle) * -1);
             Fycomp = Math.abs(FstepX) * ycomp;

             if (map[(int)(mapx)][(int)(mapy)] > 0) hit = true;

             mapx += FstepX;
             mapy += Fycomp;

             if (map[(int)(mapx)][(int)(mapy)] > 0) hit = true;
             else {
                 while (!hit && mapx > 0 && mapy > 0) { //loops while a wall has not been found and while positive indexes are still being
 checked
                     mapx += stepX;
                     mapy += ycomp;
                     if (map[(int)(mapx)][(int)(mapy)] > 0) {
                         hit = true;
                         //if (Math.toDegrees(rayAngle) < 270 && Math.toDegrees(rayAngle) > 90) {
                         //    mapy -= stepX;
                         //    mapx -= ycomp;
                         //}
                     }
                 }
             }

             mapx = Math.abs(mapx - camx);
             mapy = Math.abs(mapy - camy);

             obliqueDist = Math.sqrt((mapx*mapx) + (mapy*mapy));
             //change to be not fixed angle based
              //if (angle > Math.toRadians(135) && angle < Math.toRadians(225)) {
                // obliqueDist -= Math.sqrt(stepX*stepX + ycomp*ycomp);
             //}
             return obliqueDist;
     }

     public double HorDist(double angle) {
         double rx, ry;
         double stepX = 0, stepY = 0;
         double FstepX = 0, FstepY = 0;
         double Fxcomp, Fycomp;
         double xcomp, ycomp;
         double mapx = camx, mapy = camy;
         boolean hit = false;
         double obliqueDist = 0;

             rx = Math.cos(angle);
             ry = Math.sin(angle);

             if (ry < 0) {
                 stepY = 1;
                 FstepY = ((int)(camy + 1)) - camy;
             }
             else if (ry > 0) {
                 stepY = -1;
                 FstepY = (camy - (int)camy) * stepY;
             }

             xcomp = stepY / (Math.tan(angle) * -1);
             Fxcomp = Math.abs(FstepY) * xcomp;

             if (map[(int)(mapx)][(int)(mapy)] > 0) hit = true;

             mapx += Fxcomp;
             mapy += FstepY;

             if (map[(int)(mapx)][(int)(mapy)] > 0) hit = true;
             else {
                 while (!hit) {
                     mapx += xcomp;
                     mapy += stepY;
                     if (map[(int)(mapx)][(int)(mapy)] > 0) hit = true;
                 }
             }

             mapx = Math.abs(mapx - camx);
             mapy = Math.abs(mapy - camy);

             obliqueDist = Math.sqrt((mapx*mapx) + (mapy*mapy));
             //change to be not fixed angle based
             //if (angle > Math.toRadians(45) && angle < Math.toRadians(135)) {
               //  obliqueDist -= Math.sqrt(xcomp*xcomp + stepY*stepY);
             //}
             return obliqueDist;
     }     }

1 个答案:

答案 0 :(得分:2)

好的,所以我能够解决它。事实证明,问题是由于整数舍入(墙坐标会向下舍入),正如我所想的那样。当光线投射在x或y(或两者)在2d阵列中接近零的方向时,墙坐标将向下舍入,到墙的距离将被错误计算,结果看起来像图片上方。

我发现这种情况正在发生,因为我将壁坐标存储在双打中,虽然双精度肯定比整数更准确,但它们仍然不精确。所以发生的事情是墙壁坐标将非常接近它们应该稍微偏离的位置,并且当我在检查光线墙碰撞时将这些值转换为整数时,它们将向下舍入到实际值下的值。协调并向我提供不正确的距离。

为了解决这个问题,我添加了一个非常小的值(大约0.0001)乘以光线的步进方向(步进方向可以是正1或负1,并确定后续垂直/水平阵列网格线之间的垂直距离)检查光线墙碰撞时的光线坐标,以平衡我的算法的轻微不准确性。简而言之,这样做可以使检测到的墙壁0.0001单位更接近玩家,从而绕过不准确性并使光线坐标成功向下舍入到墙壁的实际坐标。