我正在观看关于深层强化学习的Berkely CS 294课程。但是,我在任务上遇到了一些麻烦。我试着实现下面的等式。我认为这很简单,但我未能获得评论中显示的预期结果。必须有一些我误解的东西。详细信息显示在下面的代码中。有人可以帮忙吗?
state value function http://quicklatex.com/cache3/4b/ql_a4e0ff64c86ce8e3e60f94cfb9fc4b4b_l3.png
这是我的代码:
def compute_vpi(pi, P, R, gamma):
"""
:param pi: a deterministic policy (1D array: S -> A)
:param P: the transition probabilities (3D array: S*A*S -> R)
:param R: the reward function (3D array: S*A*S -> R)
:param gamma: the discount factor (scalar)
:return: vpi, the state-value function for the policy pi
"""
nS = P.shape[0]
# YOUR CODE HERE
############## Here is what I wrote ######################
vpi = np.zeros([nS,])
for i in range(nS):
for j in range(nS):
vpi[i] += P[i, pi[i], j] * (R[i, pi[i], j] + gamma*vpi[j])
##########################################################
# raise NotImplementedError()
assert vpi.shape == (nS,)
return vpi
pi0 = np.zeros(nS,dtype='i')
compute_vpi(pi0, P_rand, R_rand, gamma)
# Expected output:
# array([ 5.206217 , 5.15900351, 5.01725926, 4.76913715, 5.03154609,
# 5.06171323, 4.97964471, 5.28555573, 5.13320501, 5.08988046])
我得到了什么:
array([ 0.61825794, 0.67755819, 0.60497582, 0.30181986, 0.67560153,
0.88691815, 0.73629922, 1.09325453, 1.15480849, 1.21112992])
一些初始化代码:
nr.seed(0) # seed random number generator
nS = 10
nA = 2
# nS: number of states
# nA: number of actions
R_rand = nr.rand(nS, nA, nS) # reward function
# R[i,j,k] := R(s=i, a=j, s'=k),
# i.e., the dimensions are (current state, action, next state)
P_rand = nr.rand(nS, nA, nS)
# P[i,j,k] := P(s'=k | s=i, a=j)
# i.e., dimensions are (current state, action, next state)
P_rand /= P_rand.sum(axis=2,keepdims=True) # normalize conditional probabilities
gamma = 0.90
答案 0 :(得分:0)
实际上,作业2提供了解决方案,如果其他人在线学习本课程并遇到一些麻烦,请尝试从下一作业中找到一些提示。