如何实现状态值函数?

时间:2016-06-14 04:27:34

标签: python reinforcement-learning

我正在观看关于深层强化学习的Berkely CS 294课程。但是,我在任务上遇到了一些麻烦。我试着实现下面的等式。我认为这很简单,但我未能获得评论中显示的预期结果。必须有一些我误解的东西。详细信息显示在下面的代码中。有人可以帮忙吗?

state value function http://quicklatex.com/cache3/4b/ql_a4e0ff64c86ce8e3e60f94cfb9fc4b4b_l3.png

这是我的代码:

def compute_vpi(pi, P, R, gamma):
    """
    :param pi: a deterministic policy (1D array: S -> A)
    :param P: the transition probabilities (3D array: S*A*S -> R)
    :param R: the reward function (3D array: S*A*S -> R)
    :param gamma: the discount factor (scalar)
    :return: vpi, the state-value function for the policy pi
    """
    nS = P.shape[0]
    # YOUR CODE HERE
    ############## Here is what I wrote ######################
    vpi = np.zeros([nS,])
    for i in range(nS):
        for j in range(nS):
            vpi[i] += P[i, pi[i], j] * (R[i, pi[i], j] + gamma*vpi[j])
    ##########################################################
    # raise NotImplementedError()
    assert vpi.shape == (nS,)
    return vpi


pi0 = np.zeros(nS,dtype='i')
compute_vpi(pi0, P_rand, R_rand, gamma)

# Expected output:
# array([ 5.206217  ,  5.15900351,  5.01725926,  4.76913715,  5.03154609,
#         5.06171323,  4.97964471,  5.28555573,  5.13320501,  5.08988046])

我得到了什么:

array([ 0.61825794,  0.67755819,  0.60497582,  0.30181986,  0.67560153,
    0.88691815,  0.73629922,  1.09325453,  1.15480849,  1.21112992])

一些初始化代码:

nr.seed(0) # seed random number generator
nS = 10
nA = 2
# nS: number of states
# nA: number of actions
R_rand = nr.rand(nS, nA, nS) # reward function
# R[i,j,k] := R(s=i, a=j, s'=k), 
# i.e., the dimensions are (current state, action, next state)
P_rand = nr.rand(nS, nA, nS) 
# P[i,j,k] := P(s'=k | s=i, a=j)
# i.e., dimensions are (current state, action, next state)

P_rand /= P_rand.sum(axis=2,keepdims=True) # normalize conditional probabilities
gamma = 0.90

1 个答案:

答案 0 :(得分:0)

实际上,作业2提供了解决方案,如果其他人在线学习本课程并遇到一些麻烦,请尝试从下一作业中找到一些提示。