所以我是R的新手。我昨天开始学习它,因为有一些数据非常不能自动导入Mathematica和Python。我正在构建一些机器学习技术来对我现在可以用R导入的数据进行分析。这是一个遗传编程实现,完成后应对某些数据进行符号回归。 (我还没有创建变异或交叉运算符,构建合法的函数列表等)。运行脚本时出现两个错误:
> Error: attempt to apply non-function > print(bestDude) > Error in print(bestDude) : object 'bestDude' not found
这是我的代码:
library("datasets")
#Allows me to map a name to each element in a numerical list.
makeStrName<-function(listOfItems)
{
for(i in 1:length(listOfItems))
{
names(listOfItems)[i]=paste("x",i,sep="")
}
return(listOfItems)
}
#Allows me to replace each random number in a vector with the corresponding
#function in a list of functions.
mapFuncList<-function(funcList,rndNumVector)
{
for(i in 1:length(funcList))
{
replace(rndNumVector, rndNumVector==i,funcList[[i]])
}
return(rndNumVector)
}
#Will generate a random function from the list of functions and a random sample.
generateOrganism<-function(inputLen,inputSeed, functions)
{
set.seed(inputSeed)
rnd<-sample(1:length(functions),inputLen,replace=T)
Org<-mapFuncList(functions,rnd)
return(Org)
}
#Will generate a series of "Organisms"
genPopulation<-function(popSize,initialSeed,initialSize,functions)
{
population<-list("null")
for(i in 2:popSize)
{
population <- c(population,generateOrganism(initialSize,initialSeed, functions))
initialSeed <- initialSeed+1
}
populationWithNames<-makeStrName(population)
return(populationWithNames)
}
#Turns the population of functions (which are actually strings in "") into
#actual functions. (i.e. changes the mode of the list from string to function).
populationFuncList<-function(Population)
{
Population[[1]]<-"x"
funCreator<-function(snippet)
txt=snippet
function(x)
{
exprs <- parse(text = txt)
eval(exprs)
}
listOfFunctions <- lapply(setNames(Population,names(Population)),function(x){funCreator(x)})
return(listOfFunctions)
}
#Applies a fitness function to the population. Puts the best organism in
#the hallOfFame.
evalPopulation<-function(populationFuncList, inputData,outputData)
{
#rmse <- sqrt( mean( (sim - obs)^2))
hallOfFame<-list(1000000000)
for(i in 1:length(populationFuncList))
{
total<-list()
for(z in 1:length(inputData))
{
total<-c(total,(abs(populationFuncList[[i]](inputData[[z]])-outputData[[z]])))
}
rmse<-sqrt(mean(total*total))
if(rmse<hallOfFame[[1]]) {hallOfFame[[1]]<-rmse}
}
return(hallOfFame)
}
#Function list, input data, output data (data to fit to)
funcs<-list("x","log(x)","sin(x)","cos(x)","tan(x)")
desiredFuncOutput<-list(1,2,3,4,5)
dataForInput<-list(1,2,3,4,5)
#Function calls
POpulation<-genPopulation(4,1,1,funcs)
POpulationFuncList<-populationFuncList(POpulation)
bestDude<-evalPopulation(POpulationFuncList,dataForInput,desiredFuncOutput)
print(bestDude)
由于Hack-R的建议,代码现在正在运行。所以这是最终的代码,以防其他人遇到类似的麻烦。
library("datasets")
#Allows me to map a name to each element in a numerical list.
makeStrName<-function(listOfItems)
{
for(i in 1:length(listOfItems))
{
names(listOfItems)[i]=paste("x",i,sep="")
}
return(listOfItems)
}
#Allows me to replace each random number in a vector with the corresponding
#function in a list of functions.
mapFuncList<-function(funcList,rndNumVector)
{
for(i in 1:length(funcList))
{
rndNumVector[rndNumVector==i]<-funcList[i]
}
return(rndNumVector)
}
#Will generate a random function from the list of functions and a random sample.
generateOrganism<-function(inputLen,inputSeed, functions)
{
set.seed(inputSeed)
rnd<-sample(1:length(functions),inputLen,replace=T)
Org<-mapFuncList(functions,rnd)
return(Org)
}
#Will generate a series of "Organisms"
genPopulation<-function(popSize,initialSeed,initialSize,functions)
{
population<-list()
for(i in 1:popSize)
{
population <- c(population,generateOrganism(initialSize,initialSeed,functions))
initialSeed <- initialSeed+1
}
populationWithNames<-makeStrName(population)
return(populationWithNames)
}
#Turns the population of functions (which are actually strings in "") into
#actual functions. (i.e. changes the mode of the list from string to function).
funCreator<-function(snippet)
{
txt=snippet
function(x)
{
exprs <- parse(text = txt)
eval(exprs)
}
}
#Applies a fitness function to the population. Puts the best organism in
#the hallOfFame.
evalPopulation<-function(populationFuncList, inputData,outputData)
{
#rmse <- sqrt( mean( (sim - obs)^2))
hallOfFame<-list(1000000000)
for(i in 1:length(populationFuncList))
{
total<-vector(mode="numeric",length=length(inputData))
for(z in 1:length(inputData))
{
total<-c(total,(abs(populationFuncList[[i]](inputData[[z]])-outputData[[z]])))
}
rmse<-sqrt(mean(total*total))
if(rmse<hallOfFame[[1]]) {hallOfFame[[1]]<-rmse}
}
return(hallOfFame)
}
#Function list, input data, output data (data to fit to)
funcs<-list("x","log(x)","sin(x)","cos(x)","tan(x)")
desiredFuncOutput<-list(1,2,3,4,5)
dataForInput<-list(1,2,3,4,5)
#Function calls
POpulation<-genPopulation(4,1,1,funcs)
POpulationFuncList <- lapply(setNames(POpulation,names(POpulation)),function(x){funCreator(x)})
bestDude<-evalPopulation(POpulationFuncList,dataForInput,desiredFuncOutput)
print(bestDude)
答案 0 :(得分:1)
在您的函数evalPopulation
中,您尝试将populationFuncList[[i]]
视为函数,但是当您传入参数POpulationFuncList
以替换变量{{1}时它不是一个功能,它是一个列表。
我不确定你要做什么,所以我不确定你想要解决这个问题的方法。如果您打算使用函数,则应更改您引用该函数的对象的名称,并将其作为参数删除,或者至少将函数作为参数而不是列表传递。
OTOH如果您打算使用列表populationFuncList
,那么您就不应该将其应用为函数而不是列表。
另一方面,如果你没有给他们这么相似的名字,这可能会更明显。
另一个潜在的问题是您的某个列表中似乎有非数字结果:
POpulationFuncList
您无法获取角色的绝对值&#34; x&#34;,所以我只是想确保您已经意识到这一点。
第三个问题是您在名为> populationFuncList(POpulation)
$x1
[1] "x"
$x2
[1] 2
$x3
[1] 1
$x4
[1] 1
的非数字数据类型对象上进行数学运算。您需要将类型更改为数字或将其正确编入索引。
现在我不可能确切地知道你应该选择哪种无限可能来解决这个问题,因为我不知道你的用例的细节。但是,这是一个可能的解决方案,您应该能够适应用例的细节:
total