Python平均表格数据帮助

时间:2010-09-22 16:24:52

标签: python

好的我有以下工作程序。它打开的列数据文件对于excel来说太大了,并找到每列的平均值:

示例数据是:

Joe Sam Bob
1   2   3
2   1   3

它返回

Joe Sam Bob
1.5 1.5 3

这很好。问题是某些列将NA作为值。我想跳过这个NA并计算剩余值的平均值 所以

Bobby
1
NA
2

应输出为

Bobby
1.5

这是我现有的程序,在这里帮助建立。任何帮助表示赞赏!

with open('C://avy.txt', "rtU") as f:
    columns = f.readline().strip().split(" ")
    numRows = 0
    sums = [0] * len(columns)

    for line in f:
        # Skip empty lines
        if not line.strip():
            continue

        values = line.split(" ")
        for i in xrange(len(values)):
            sums[i] += int(values[i])
        numRows += 1

        with open('c://finished.txt', 'w') as ouf:
             for index, summedRowValue in enumerate(sums):
                 print>>ouf, columns[index], 1.0 * summedRowValue / numRows

现在我有了这个:

以open('C://avy.txt',“rtU”)为f:

def get_averages(f):
   headers = f.readline().split()
   ncols = len(headers)
   sumx0 = [0] * ncols
   sumx1 = [0.0] * ncols
   lino = 1

for line in f:
   lino += 1
   values = line.split()

for colindex, x in enumerate(values):
        if colindex >= ncols:
             print >> sys.stderr, "Extra data %r in row %d, column %d" %(x, lino, colindex+1)
             continue
             try:
                value = float(x)
             except ValueError:
               continue
               sumx0[colindex] += 1
        sumx1[colindex] += value
        print headers
print sumx1
print sumx0
averages = [
    total / count if count else None
   for total, count in zip(sumx1, sumx0)
    ]
print averages

它说:

追踪(最近一次通话):   文件“C:/avy10.py”,第11行,in     lino + = 1 NameError:名称'lino'未定义

5 个答案:

答案 0 :(得分:3)

这是一个功能性解决方案:

text = """Joe Sam Bob
1   2   3
2   1   3
NA 2 3
3 5 NA"""

def avg( lst ):
    """ returns the average of a list """
    return 1. * sum(lst)/len(lst)

# split that text
parts = [line.split() for line in text.splitlines()]
#remove the headers
names = parts.pop(0)
# zip(*m) does something like transpose a matrix :-)
columns = zip(*parts)
# convert to numbers and leave out the NA
numbers = [[int(x) for x in column if x != 'NA' ] for column in columns]
# all left is averaging
averages = [avg(col) for col in numbers]
# and printing
for name, x in zip( names, averages):
    print name, x

我在这里写了很多列表推导,所以你可以打印出中间步骤,但那些可以是原因的生成器。

答案 1 :(得分:2)

[为清晰起见而编辑]

从文本文件中读取项目时,它们将作为字符串而非数字导入。这意味着如果您的文本文件具有数字3并且您将其读入Python,则需要在执行算术运算之前将字符串转换为数字。

现在,您有一个包含colums的文本文件。每列都有一个标题和一组项目。每个项目都是数字或不是。如果它是一个数字,它将被函数float正确转换,如果它不是有效数字(也就是说,如果转换不存在),转换将引发一个名为ValueError的异常。

因此,您可以遍历列表和项目,因为它已在多个答案中正确解释。如果可以转换为float,则累积统计信息。如果没有,继续忽略该条目。

如果您需要更多关于什么是“鸭子打字”的信息(一种可以恢复为“更好地请求宽恕以获得许可”的范例),请查看Wikipedia link。如果你正在使用Python,你会经常听到这个术语。

下面我介绍一个可以累积统计数据的类(你对这个意思感兴趣)。您可以为表中的每一列使用该类的实例。

class Accumulator(object):
    """
    Used to accumulate the arithmetic mean of a stream of
    numbers. This implementation does not allow to remove items
    already accumulated, but it could easily be modified to do
    so. also, other statistics could be accumulated.
    """
    def __init__(self):
     # upon initialization, the numnber of items currently
     # accumulated (_n) and the total sum of the items acumulated
     # (_sum) are set to zero because nothing has been accumulated
     # yet.
     self._n = 0
     self._sum = 0.0

    def add(self, item):
     # the 'add' is used to add an item to this accumulator
     try:
        # try to convert the item to a float. If you are
        # successful, add the float to the current sum and
        # increase the number of accumulated items
        self._sum += float(item)
        self._n += 1
     except ValueError:
        # if you fail to convert the item to a float, simply
        # ignore the exception (pass on it and do nothing)
        pass

    @property
    def mean(self):
     # the property 'mean' returns the current mean accumulated in
     # the object
     if self._n > 0:
        # if you have more than zero items accumulated, then return
        # their artithmetic average
        return self._sum / self._n
     else:
        # if you have no items accumulated, return None (you could
        # also raise an exception)
        return None

# using the object:

# Create an instance of the object "Accumulator"
my_accumulator = Accumulator()
print my_accumulator.mean
# prints None because there are no items accumulated

# add one (a number)
my_accumulator.add(1)
print my_accumulator.mean
# prints 1.0

# add two (a string - it will be converted to a float)
my_accumulator.add('2')
print my_accumulator.mean
# prints 1.5

# add a 'NA' (will be ignored because it cannot be converted to float)
my_accumulator.add('NA')
print my_accumulator.mean
# prints 1.5 (notice that it ignored the 'NA')

干杯。

答案 2 :(得分:-1)

将最内层循环更改为:

    values = line.split(" ")
    for i in xrange(len(values)):
        if values[i] == "NA":
            continue
        sums[i] += int(values[i])
    numRows += 1

答案 3 :(得分:-1)

更小的代码:

with open('in', "rtU") as f:
    lines = [l for l in f if l.strip()]
    names = '\t'.join(lines[0].split())
    numbers = [[i.strip() for i in line.split()] for line in lines[1:]]
    person_data = zip(*numbers)
    person_data = [tuple(int(i) for i in t if i!="NA") for t in person_data]
    averages = map(lambda x: str(float(sum(x))/len(x)), person_data)

with open('out', 'w') as f:
    f.write(names)
    f.write('\n')
    f.write('\t'.join(averages))

我在John Machin发表评论后对此进行了测试。回应他的评论:

  1. 这是一个存在的错误,因为我误解了这个问题。它已被修复
  2. 我现在试图让这条线路更具可读性,但说实话,我不明白为什么你把它称之为混淆“
  3. 您在我的代码中指出了一个逻辑错误。我想我真的不应该在课堂上这样做...为此我道歉
  4. 我同意readlines()是多余的。我没有一个合适的python解释器来交叉检查这个,所以我把它留作安全
  5. 希望这更好。

答案 4 :(得分:-1)

以下代码正确处理不同的计数,并检测额外的数据......换句话说,它相当健壮。如果文件为空(2),如果标题行为空,则可以通过显式消息(1)来改进。另一种可能性是明确测试"NA",并在字段既不是"NA"也不浮动时发出错误消息。

>>> import sys, StringIO
>>>
>>> data = """\
... Jim Joe Billy Bob
... 1   2   3     x
... 2   x   x     x  666
...
... 3   4   5     x
... """
>>>
>>> def get_averages(f):
...     headers = f.readline().split()
...     ncols = len(headers)
...     sumx0 = [0] * ncols
...     sumx1 = [0.0] * ncols
...     lino = 1
...     for line in f:
...         lino += 1
...         values = line.split()
...         for colindex, x in enumerate(values):
...             if colindex >= ncols:
...                 print >> sys.stderr, "Extra data %r in row %d, column %d" %
(x, lino, colindex+1)
...                 continue
...             try:
...                 value = float(x)
...             except ValueError:
...                 continue
...             sumx0[colindex] += 1
...             sumx1[colindex] += value
...     print headers
...     print sumx1
...     print sumx0
...     averages = [
...         total / count if count else None
...         for total, count in zip(sumx1, sumx0)
...         ]
...     print averages

修改在此处添加:

...     return headers, averages

...
>>> sio = StringIO.StringIO(data)
>>> get_averages(sio)
Extra data '666' in row 3, column 5
['Jim', 'Joe', 'Billy', 'Bob']
[6.0, 6.0, 8.0, 0.0]
[3, 2, 2, 0]
[2.0, 3.0, 4.0, None]
>>>

修改

正常使用:

with open('myfile.text') as mf:
   hdrs, avgs = get_averages(mf)