censnFlow

时间:2016-06-06 17:02:48

标签: tensorflow cudnn

Ubuntu 14.04,CUDA版本7.5.18,每晚构建张量流

在tensorflow中运行tf.nn.max_pool()操作时,出现以下错误:

  

E tensorflow / stream_executor / cuda / cuda_dnn.cc:286]加载的cudnn   library:5005但是source是针对4007编译的。如果使用二进制文件   安装,升级您的cudnn库以匹配。如果建设   来源,确保加载的库与您的版本匹配   在编译配置期间指定。

     

W tensorflow / stream_executor / stream.cc:577]尝试执行DNN   使用没有DNN支持的StreamExecutor进行操作

     

追踪(最近一次呼叫最后一次):

     

...

如何在tensorflow的编译配置中指定我的cudnn版本?

4 个答案:

答案 0 :(得分:2)

进入TensorFlow源代码目录,然后执行配置文件:/.configure

以下是TensorFlow documentation

的示例
$ ./configure
Please specify the location of python. [Default is /usr/bin/python]:
Do you wish to build TensorFlow with GPU support? [y/N] y
GPU support will be enabled for TensorFlow

Please specify which gcc nvcc should use as the host compiler. [Default is
/usr/bin/gcc]: /usr/bin/gcc-4.9

Please specify the Cuda SDK version you want to use, e.g. 7.0. [Leave
empty to use system default]: 7.5

Please specify the location where CUDA 7.5 toolkit is installed. Refer to
README.md for more details. [default is: /usr/local/cuda]: /usr/local/cuda

Please specify the Cudnn version you want to use. [Leave empty to use system
default]: 4.0.4

Please specify the location where the cuDNN 4.0.4 library is installed. Refer to
README.md for more details. [default is: /usr/local/cuda]: /usr/local/cudnn-r4-rc/

Please specify a list of comma-separated Cuda compute capabilities you want to
build with. You can find the compute capability of your device at:
https://developer.nvidia.com/cuda-gpus.
Please note that each additional compute capability significantly increases your
build time and binary size. [Default is: \"3.5,5.2\"]: 3.5

Setting up Cuda include
Setting up Cuda lib64
Setting up Cuda bin
Setting up Cuda nvvm
Setting up CUPTI include
Setting up CUPTI lib64
Configuration finished

答案 1 :(得分:1)

好像你已经安装了cudnn 5。您需要在运行./configure

时进行设置
Please specify the Cudnn version you want to use. [Leave empty to use system
default]: 5

答案 2 :(得分:0)

添加我的2美分:在我的情况下(TF0.12.1,从UPDATE t SET USER_FNM = bauser.user_fnm FROM @Users t INNER JOIN bauser ON bauser.user_key = t.USER_KEY 安装到anaconda,没有pip权限)安装了CuDNNv5,但不是默认值。

设置sudo解决了问题

答案 3 :(得分:0)

我也遇到了这样一个不兼容的问题:

Loaded runtime CuDNN library: 5005 (compatibility version 5000) but source wascompiled with 5110 (compatibility version 5100).  If using a binary install, upgrade your CuDNNlibrary to match.  If building fromsources, make sure the library loaded at runtime matches a compatible versionspecified during compile configuration.

所以我下载了CuDNN 5.1(与CUDA8.0兼容)并用它替换5.0然后一切顺利。

警告:来自nvidia的CuDNN是不可用的,但您可以从其他人的共享中找到它。