我正在尝试在python上使用xgboost
这是我的代码。 xgb.train工作,但我得到xgb.cv错误 虽然看起来我用它正确的方式
以下为我工作
###### XGBOOST ######
import datetime
startTime = datetime.datetime.now()
import xgboost as xgb
data_train = np.array(traindata.drop('Category',axis=1))
labels_train = np.array(traindata['Category'].cat.codes)
data_valid = np.array(validdata.drop('Category',axis=1))
labels_valid = np.array(validdata['Category'].astype('category').cat.codes)
weights_train = np.ones(len(labels_train))
weights_valid = np.ones(len(labels_valid ))
dtrain = xgb.DMatrix( data_train, label=labels_train,weight = weights_train)
dvalid = xgb.DMatrix( data_valid , label=labels_valid ,weight = weights_valid )
param = {'bst:max_depth':5, 'bst:eta':0.05, # eta [default=0.3]
#'min_child_weight':1,'gamma':0,'subsample':1,'colsample_bytree':1,'scale_pos_weight':0, # default
# max_delta_step:0 # default
'min_child_weight':5,'scale_pos_weight':0, 'max_delta_step':2,
'subsample':0.8,'colsample_bytree':0.8,
'silent':1, 'objective':'multi:softprob' }
param['nthread'] = 4
param['eval_metric'] = 'mlogloss'
param['lambda'] = 2
param['num_class']=39
evallist = [(dtrain,'train'),(dvalid,'eval')] # if there is a validation set
# evallist = [(dtrain,'train')] # if there is no validation set
plst = param.items()
plst += [('ams@0','eval_metric')]
num_round = 100
bst = xgb.train( plst, dtrain, num_round, evallist,early_stopping_rounds=5 ) # early_stopping_rounds=10 # when there is a validation set
# bst.res=xgb.cv(plst,dtrain,num_round,nfold = 5,evallist,early_stopping_rounds=5)
bst.save_model('0001.model')
# dump model
bst.dump_model('dump.raw.txt')
# dump model with feature map
# bst.dump_model('dump.raw.txt','featmap.txt')
x = datetime.datetime.now() - startTime
print(x)
但如果我改变了行
bst = xgb.train( plst, dtrain, num_round, evallist,early_stopping_rounds=5 )
这一个
bst.res=xgb.cv(plst,dtrain,num_round,nfold = 5,evallist,early_stopping_rounds=5)
我收到以下意外错误:
文件“”,第45行 bst.res = xgb.cv(plst,dtrain,num_round,nfold = 5,evallist,early_stopping_rounds = 5)SyntaxError:非关键字arg after 关键字arg
EDIT1 :我也尝试更改关键字的顺序
bst.res=xgb.cv(plst,dtrain,num_round,evallist,nfold = 5,early_stopping_rounds=5)
我收到以下错误
---------------------------------------------------------------------------
TypeError
Traceback (most recent call last) <ipython-input-49-36177ef64bab> in <module>()
43 # bst = xgb.train( plst, dtrain, num_round, evallist,early_stopping_rounds=5 ) # early_stopping_rounds=10 # when there is a validation set
44
---> 45 bst.res=xgb.cv(plst,dtrain,num_round,evallist,nfold =5 ,early_stopping_rounds=5)
46
47 bst.save_model('0001.model')
TypeError: cv() got multiple values for keyword argument 'nfold'
EDIT2
毕竟,cv中不需要验证集。
xgb.cv的签名中没有参数evals
(当xgb.train存在时)
所以我删除它并通过
bst.res=xgb.cv(params=plst,dtrain=dtrain,num_boost_round=num_round,nfold = 5,early_stopping_rounds=5)
然后我收到此错误
/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/xgboost/training.pyc
in cv(params, dtrain, num_boost_round, nfold, metrics, obj, feval,
maximize, early_stopping_rounds, fpreproc, as_pandas, show_progress,
show_stdv, seed)
413 best_score_i = 0
414 results = []
--> 415 cvfolds = mknfold(dtrain, nfold, params, seed, metrics, fpreproc)
416 for i in range(num_boost_round):
417 for fold in cvfolds:
/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/xgboost/training.pyc
in mknfold(dall, nfold, param, seed, evals, fpreproc)
280 else:
281 tparam = param
--> 282 plst = list(tparam.items()) + [('eval_metric', itm) for itm in evals]
283 ret.append(CVPack(dtrain, dtest, plst))
284 return ret
AttributeError: 'list' object has no attribute 'items'
答案 0 :(得分:3)
以下是从文档中复制的xgboost.cv
签名
xgboost.cv(params,dtrain,num_boost_round = 10,nfold = 3,stratified = False,folds = None,metrics =(),obj = None,feval = None,maximize = False,early_stopping_rounds = None,fpreproc =无,as_pandas = True,verbose_eval =无,show_stdv = True,种子= 0,回调=无)
请注意,确实有两个严格的位置参数,第四个位置的参数是nfold
。
您的电话是
xgb.cv(plst, dtrain, num_round, evallist, nfold=5, early_stopping_rounds=5)
当python解析函数调用时,它首先匹配您按位置按位置传递的所有参数。所以在你的情况下,python匹配像这样
Formal Parameter <-- What You Passed In
params <-- plst
dtrain <-- dtrain
num_boost_round <-- num_round
nfold <-- evallist
然后python将您传递的所有参数作为关键字按名称进行匹配。所以在你的情况下,python匹配像这样
Formal Parameter <-- What You Passed In
nfold <-- 5
early_stopping_rounds <-- 5
所以你可以看到形式参数nfold
被分配了两次,这是产生这个的
TypeError: cv() got multiple values for keyword argument 'nfold'
最简单和最清晰的解决方法可能是将所有您的参数作为关键字传递。通常,最好将位置参数限制为非常小的数字,大多数程序员似乎最多只针对两个位置参数。
但我得到另一个错误,我无法弄明白唉
看起来你正在传递一个预期字典的列表。再次使用文档,第一个参数
params(dict) - Booster params。
应该是字典。