我正在尝试使用基于Cifar10 tutorial的训练模型,并希望提供
它带有外部图像32x32(jpg或png)
我的目标是能够将标签作为输出。
换句话说,我想为网络提供一个大小为32 x 32的单个jpeg图像,3个没有标签的通道作为输入,并且推理过程给我 tf.argmax(logits, 1)
。
基本上我希望能够在外部图像上使用经过训练的cifar10模型,并查看它将吐出的类。
我一直在尝试基于Cifar10教程做到这一点,不幸的是总是有问题。尤其是会话概念和批处理概念。
对Cifar10的任何帮助都将不胜感激。
到目前为止,这是编译问题的实现代码:
#!/usr/bin/env python
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from datetime import datetime
import math
import time
import tensorflow.python.platform
from tensorflow.python.platform import gfile
import numpy as np
import tensorflow as tf
import cifar10
import cifar10_input
import os
import faultnet_flags
from PIL import Image
FLAGS = tf.app.flags.FLAGS
def evaluate():
filename_queue = tf.train.string_input_producer(['/home/tensor/.../inputImage.jpg'])
reader = tf.WholeFileReader()
key, value = reader.read(filename_queue)
input_img = tf.image.decode_jpeg(value)
init_op = tf.initialize_all_variables()
# Problem in here with Graph / session
with tf.Session() as sess:
sess.run(init_op)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
for i in range(1):
image = input_img.eval()
print(image.shape)
Image.fromarray(np.asarray(image)).show()
# Problem in here is that I have only one image as input and have no label and would like to have
# it compatible with the Cifar10 network
reshaped_image = tf.cast(image, tf.float32)
height = FLAGS.resized_image_size
width = FLAGS.resized_image_size
resized_image = tf.image.resize_image_with_crop_or_pad(reshaped_image, width, height)
float_image = tf.image.per_image_whitening(resized_image) # reshaped_image
num_preprocess_threads = 1
images = tf.train.batch(
[float_image],
batch_size=128,
num_threads=num_preprocess_threads,
capacity=128)
coord.request_stop()
coord.join(threads)
logits = faultnet.inference(images)
# Calculate predictions.
#top_k_predict_op = tf.argmax(logits, 1)
# print('Current image is: ')
# print(top_k_predict_op[0])
# this does not work since there is a problem with the session
# and the Graph conflicting
my_classification = sess.run(tf.argmax(logits, 1))
print ('Predicted ', my_classification[0], " for your input image.")
def main(argv=None):
evaluate()
if __name__ == '__main__':
tf.app.run() '''
答案 0 :(得分:4)
首先是一些基础知识:
tf.Session()
并在其中工作:启动队列运行器,并调用sess.run()
以下是您的代码应该是什么样的
# 1. GRAPH CREATION
filename_queue = tf.train.string_input_producer(['/home/tensor/.../inputImage.jpg'])
... # NO CREATION of a tf.Session here
float_image = ...
images = tf.expand_dims(float_image, 0) # create a fake batch of images (batch_size=1)
logits = faultnet.inference(images)
_, top_k_pred = tf.nn.top_k(logits, k=5)
# 2. TENSORFLOW SESSION
with tf.Session() as sess:
sess.run(init_op)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
top_indices = sess.run([top_k_pred])
print ("Predicted ", top_indices[0], " for your input image.")
正如@mrry建议的那样,如果您只需要处理单个图像,则可以删除队列运行程序:
# 1. GRAPH CREATION
input_img = tf.image.decode_jpeg(tf.read_file("/home/.../your_image.jpg"), channels=3)
reshaped_image = tf.image.resize_image_with_crop_or_pad(tf.cast(input_img, width, height), tf.float32)
float_image = tf.image.per_image_withening(reshaped_image)
images = tf.expand_dims(float_image, 0) # create a fake batch of images (batch_size = 1)
logits = faultnet.inference(images)
_, top_k_pred = tf.nn.top_k(logits, k=5)
# 2. TENSORFLOW SESSION
with tf.Session() as sess:
sess.run(init_op)
top_indices = sess.run([top_k_pred])
print ("Predicted ", top_indices[0], " for your input image.")
答案 1 :(得分:0)
cifar10_eval.py中的原始源代码也可用于测试自己的单个图像,如以下控制台输出中所示
nbatfai@robopsy:~/Robopsychology/repos/gpu/tensorflow/tensorflow/models/image/cifar10$ python cifar10_eval.py --run_once True 2>/dev/null
[ -0.63916457 -3.31066918 2.32452989 1.51062226 15.55279636
-0.91585422 1.26451302 -4.11891603 -7.62230825 -4.29096413]
deer
nbatfai@robopsy:~/Robopsychology/repos/gpu/tensorflow/tensorflow/models/image/cifar10$ python cifar2bin.py matchbox.png input.bin
nbatfai@robopsy:~/Robopsychology/repos/gpu/tensorflow/tensorflow/models/image/cifar10$ python cifar10_eval.py --run_once True 2>/dev/null
[ -1.30562115 12.61497402 -1.34208572 -1.3238833 -6.13368177
-1.17441642 -1.38651907 -4.3274951 2.05489922 2.54187846]
automobile
nbatfai@robopsy:~/Robopsychology/repos/gpu/tensorflow/tensorflow/models/image/cifar10$
和代码段
#while step < num_iter and not coord.should_stop():
# predictions = sess.run([top_k_op])
print(sess.run(logits[0]))
classification = sess.run(tf.argmalogits[0], 0))
cifar10classes = ["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
print(cifar10classes[classification])
#true_count += np.sum(predictions)
step += 1
# Compute precision @ 1.
precision = true_count / total_sample_count
# print('%s: precision @ 1 = %.3f' % (datetime.now(), precision))
更多详情可在帖子How can I test own image to Cifar-10 tutorial on Tensorflow?
中找到