我目前正在编写一些代码以特定方式处理逻辑表单。为了实现这一目标,我编写了以下代码,使用了镜头:
string input = "word1 abcdkl word2";
Regex regex = new Regex(@"^(?=.*\bword1\b)(?=.*\bword2\b).*$");
Match match = regex.Match(input);
if (match.Success)
{
Console.WriteLine(match.Groups[0].Value);
}
然后,我尝试用自然的方式写下以下内容(我相信的是):
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE Rank2Types #-}
module Logic.Internal.Formula where
import BasicPrelude hiding (empty, negate)
import qualified Data.Set as Set
import Control.Lens
data Atom = Pos { i :: Integer}
| Neg { i :: Integer}
deriving (Eq, Ord, Show, Read)
negatingAtom :: Iso' Atom Atom
negatingAtom = iso go go
where go (Pos x) = Neg x
go (Neg x) = Pos x
newtype Conjunction a = Conjunction (Set a)
deriving (Eq, Ord, Read, Show)
conjuncts :: Conjunction a -> [a]
conjuncts (Conjunction x) = Set.toList x
newtype Disjunction a = Disjunction (Set a)
deriving (Eq, Ord, Read, Show)
disjuncts :: Disjunction a -> [a]
disjuncts (Disjunction x) = Set.toList x
negatingClause :: Iso' (Conjunction Atom) (Disjunction Atom)
negatingClause = liftClause negatingAtom
type CNF = Conjunction (Disjunction Atom)
type DNF = Disjunction (Conjunction Atom)
-- Helper stuff
liftClause :: (Ord a) => Iso' a a -> Iso' (Conjunction a) (Disjunction a)
liftClause x = let pipeline = Set.fromList . fmap (view x) in
iso (Disjunction . pipeline . conjuncts) (Conjunction . pipeline . disjuncts)
然而,类型检查员肯定对此并不满意,而且我完全不确定为什么。确切的输出如下:
type CNF = Conjunction (Disjunction Atom)
type DNF = Disjunction (Conjunction Atom)
negatingForm :: Iso' CNF DNF
negatingForm = liftClause negatingClause
我对镜头有点新意,并且非常想了解我在这里误解的内容,以及如何实现所需的Couldn't match type ‘Conjunction Atom’ with ‘Disjunction Atom’
Expected type: p1 (Disjunction Atom) (f1 (Disjunction Atom))
-> p1 (Disjunction Atom) (f1 (Disjunction Atom))
Actual type: p1 (Disjunction Atom) (f1 (Disjunction Atom))
-> p1 (Conjunction Atom) (f1 (Conjunction Atom))
In the first argument of ‘liftClause’, namely ‘negatingClause’
In the expression: liftClause negatingClause
。
答案 0 :(得分:2)
(答案也张贴到http://lpaste.net/164691)
以下是使用TypeFamilies的解决方案。
首先,我们将简化设置:
{-# LANGUAGE TypeFamilies #-}
import Control.Lens
data Atom = Pos Int | Neg Int deriving (Show)
newtype And a = And [a] deriving (Show)
newtype Or a = Or [a] deriving (Show)
目标是创建以下功能序列:
f0 :: Atom -> Atom g0 :: Atom -> Atom
f1 :: And Atom -> Or Atom g1 :: Or Atom -> And Atom
f2 :: And (Or Atom) -> Or (And Atom) g1 :: Or (And Atom) -> And (Or Atom)
...
f和g是彼此的反转。从这些功能我们可以
制作Iso'
镜头:
iso0 = iso f0 g0 :: Iso' Atom Atom
iso1 = iso f1 g1 :: Iso' (And Atom) (Or Atom)
iso2 = iso f2 g2 :: Iso' (And (Or Atom)) (Or (And Atom))
我们首先创建充当类型函数的类型族Negated
。
Negated a
是f函数(或g函数)将a
映射到的类型。
type family Negated a
type instance Negated Atom = Atom
type instance Negated (And a) = Or (Negated a)
type instance Negated (Or a) = And (Negated a)
例如,Negated (And (Or Atom))
是Or (And Atom))
类型。
接下来,我们定义一个类型类来执行反转操作:
class Invertible a where
invert :: a -> Negated a
instance Invertible Atom where
invert (Pos a) = Neg a
invert (Neg a) = Pos a
instance Invertible a => Invertible (And a) where
invert (And clauses) = Or (map invert clauses)
instance Invertible a => Invertible (Or a) where
invert (Or clauses) = And (map invert clauses)
同构的定义现在是微不足道的:
iso0 :: Iso' Atom Atom
iso0 = iso invert invert
iso1 :: Iso' (And Atom) (Or Atom)
iso1 = iso invert invert
iso2 :: Iso' (And (Or Atom)) (Or (And Atom))
iso2 = iso invert invert
示例:
and1 = And [ Pos 1, Neg 2, Pos 3 ]
or1 = Or [and1]
test1 = invert and1 -- Or [Neg 1,Pos 2,Neg 3]
test2 = invert or1 -- And [Or [Neg 1,Pos 2,Neg 3]]
请注意,此方法对逻辑谓词建模的一个限制是所有Atom必须在表达式树中处于相同的深度。
例如,您无法代表此树(此处为x
,y
和z
为原子):
and
/ \
x or
/ \
y z
答案 1 :(得分:1)
liftClause
只能在Iso' a a
上运行 - 即两个域必须具有相同的类型 - 类型a
。
但是negatingClause
的类型为:
negatingClause :: Iso' (Conjunction Atom) (Disjunction Atom)
所以由于liftClause
和Conjunction Atom
不一样,因此您无法致电Disjunction Atom
。
答案 2 :(得分:1)
我没有详细阅读这一点来弄清楚你应该做什么,但是liftClause
需要Iso' a a
,即从某种类型到自身的同构。 negatingClause
是Iso' (Conjunction Atom) (Disjunction Atom)
;这肯定与Iso' a a
不符。这就是为什么类型错误抱怨无法将Conjunction Atom
与Disjunction Atom
匹配。