我正在尝试完成以下张量流教程和(尝试问题4):https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/udacity/3_regularization.ipynb
但是,我想我可能会将权重数组设置为错误。只要我将hidden_layer
更改为[image_size * image_size,1024,num_labels]
(即只有一个隐藏图层),就可以正常使用。目前我得到了NaN
的损失。
一个可能的解决方案就是该块
for i in range(1,len(weights)-1):
relus = tf.nn.dropout(tf.nn.relu(tf.matmul(relus, weights[i]) + biases[i]),p_hide)
由于我正在破坏relus的过去价值而神经网络需要他们进行反向传播,因此导致问题。实际上,当存在一个隐藏层时,该块不会被执行。
batch_size = 128
hidden_layer = [image_size * image_size,1024,300,num_labels]
l2_regulariser = 0.005
p_hide = 0.5
graph = tf.Graph()
with graph.as_default():
# Input data. For the training data, we use a placeholder that will be fed
# at run time with a training minibatch.
tf_train_dataset = tf.placeholder(tf.float32,shape=(batch_size, image_size * image_size))
tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
tf_valid_dataset = tf.constant(valid_dataset)
tf_test_dataset = tf.constant(test_dataset)
# Variables.
weights = [None]*(len(hidden_layer)-1)
biases = [None]*(len(hidden_layer)-1)
for i in range(len(weights)):
weights[i] = tf.Variable(tf.truncated_normal([hidden_layer[i], hidden_layer[i+1]]))
biases[i] = tf.Variable(tf.zeros([hidden_layer[i+1]]))
# Training computation.
relus = tf.nn.dropout(tf.nn.relu(tf.matmul(tf_train_dataset, weights[0]) + biases[0]),p_hide)
for i in range(1,len(weights)-1):
relus = tf.nn.dropout(tf.nn.relu(tf.matmul(relus, weights[i]) + biases[i]),p_hide)
logits = tf.matmul(relus, weights[len(weights)-1]) + biases[len(weights)-1]
loss = 0
for weight in weights:
loss += tf.nn.l2_loss(weight)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels))+ l2_regulariser*loss
# Optimizer.
global_step = tf.Variable(0) # count the number of steps taken.
learning_rate = tf.train.exponential_decay(0.5, global_step, decay_steps=20, decay_rate=0.9)
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
# Predictions for the training, validation, and test data.
train_prediction = tf.nn.softmax(logits)
relus = tf.nn.relu(tf.matmul(tf_valid_dataset, weights[0]) + biases[0])
for i in range(1,len(weights)-1):
relus = tf.nn.relu(tf.matmul(relus, weights[i]) + biases[i])
valid_prediction = tf.nn.softmax(tf.matmul(relus, weights[len(weights)-1]) + biases[len(weights)-1])
relus = tf.nn.relu(tf.matmul(tf_test_dataset, weights[0]) + biases[0])
for i in range(1,len(weights)-1):
relus = tf.nn.relu(tf.matmul(relus, weights[i]) + biases[i])
test_prediction = tf.nn.softmax(tf.matmul(relus, weights[len(weights)-1]) + biases[len(weights)-1])
######################
# The NN training part
######################
num_steps = 3001
with tf.Session(graph=graph) as session:
tf.initialize_all_variables().run()
print("Initialized")
for step in range(num_steps):
# Pick an offset within the training data, which has been randomized.
# Note: we could use better randomization across epochs.
offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
# Generate a minibatch.
batch_data = train_dataset[offset:(offset + batch_size), :]
batch_labels = train_labels[offset:(offset + batch_size), :]
# Prepare a dictionary telling the session where to feed the minibatch.
# The key of the dictionary is the placeholder node of the graph to be fed,
# and the value is the numpy array to feed to it.
feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels, global_step : int(step)}
_, l, predictions = session.run(
[optimizer, loss, train_prediction], feed_dict=feed_dict)
if (step % 500 == 0):
print("Minibatch loss at step %d: %f" % (step, l))
print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels))
print("Validation accuracy: %.1f%%" % accuracy(
valid_prediction.eval(), valid_labels))
print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels))
答案 0 :(得分:1)
你最好初始化你的体重:
tf.truncated_normal([hidden_layer[i], hidden_layer[i+1]], stddev=0.1)
最重要的是,你应该将学习率降低到0.01
,0.001
...
我认为你会失去NaN
,因为学习率太高而且会打破网络(你的体重会爆炸)。