我正在尝试制作一个看起来有点像的三角形图:
X
o x
o o x
我有gridspec的代码:
gs1 = gridspec.GridSpec(3,3)
'o'是椭圆图,'x'是高斯图。我的代码给了我标准化的高斯:
def gaussian(x, mu, sig_gauss):
return 1./(sqrt(2.*pi)*sig_gauss)*np.exp(-np.power((x - mu)/sig_gauss, 2.)/2)
sig_mean =[]
for i in range(len(sig_gauss)):
pairs = (1,sig_gauss[i])
sig_mean.append(pairs)
问题是当我尝试格式化三个高斯图时,它们就在上面的排列中。我想为每个高斯分别绘制一个单独的图形,而不是全部覆盖在同一个图形上。
这是我到目前为止尝试过的事情:
axagh = []
for mu, sig_gauss in sig_mean:
axsbplt = plt.plot(gaussian(np.linspace(-3, 3, 120), mu, sig_gauss))
axagh.append(axsbplt)
ax4 = plt.subplot(gs1[0,0])
ax4.add_figure(axagh[0])
ax4.grid()
问题是高斯人都出现在同一个图表上,他们也不在正确的位置。
这是整个代码(练习图函数的第一部分是从前一个函数创建省略号):
def normalized_gaussian(model,x,x0,vrange, noise_type='flat',sigma=1, sigma_noise = 1,v0=80,t0=1000,beta=-2.5,delta_v=1e6,delta_t=3600*500,mu=1):
covar = covariance_parameters(model,x,x0,vrange, noise_type= noise_type,sigma=1, sigma_noise = 1,v0=80,t0=1000,beta=-2.5,delta_v=1e6,delta_t=3600*500)
diagonal = np.diag(covar)
sigma_gaussian = np.sqrt(diagonal)
gaussian = []
#for i in range(3):
#norm_gauss = '1/(2*np.pi*sigma_gaussian[i]**2)*np.exp(-(mu-a)**2/(2*(sigma_gaussian[i]**2)))'
#gaussian.append(norm_gauss)
return sigma_gaussian
这里,sigma_gaussian是一个3x1阵列。
def practice_graphs(model,x,x0,vrange, noise_type='flat',sigma=1, sigma_noise = 1,v0=80,t0=1000,beta=-2.5,delta_v=1e6,delta_t=3600*500,xlim='', ylim='', fig_axes = '',mu=1):
plt.close()
plt.close()
plt.close()
plt.close()
a,b,rotation_angle = uncertainty_parameters(model,x,x0,vrange, noise_type=noise_type,sigma=1, sigma_noise = 1,v0=80,t0=1000,beta=-2.5,delta_v=1e6,delta_t=3600*500)
ellipses = []
ellipsecheck = []
alpha = [1.52,2.48]
color = ['b','r']
for i in range(3):
for j in range(2):
el = patches.Ellipse(xy=(0,0), width=alpha[j]*2*a[i], height=alpha[j]*2*b[i], angle = rotation_angle[i], fill = False, edgecolor = color[j])
########width and height are total (so 2a and 2b), angle in degrees
ellipses.append(el)
ellipses = np.array(ellipses) #an array of all 3 ellipses' data
#fig1, ax = plt.subplots(2, 2, figsize=(10,7))
gs1 = gridspec.GridSpec(3,3)
ax1 = plt.subplot(gs1[1,0])
ax1.add_patch(ellipses[0])
ax1.add_patch(ellipses[1])
#ax1.set_xlabel(r'$\sigma_A$ (K)')
ax1.set_ylabel(r'$\sigma_{FWHM}$ (MHz)')
ax1.set_xticklabels([])
ax1.grid()
ax2= plt.subplot(gs1[-1,0])
ax2.add_patch(ellipses[4])
ax2.add_patch(ellipses[5])
ax2.set_xlabel(r'$\sigma_{A}$ (K)')
ax2.set_ylabel("$\sigma_{v0}$(MHz)")
ax2.grid()
ax3 = plt.subplot(gs1[-1,-2])
ax3.add_patch(ellipses[2])
ax3.add_patch(ellipses[3])
ax3.set_xlabel(r'$\sigma_{FWHM}$ (MHz)')
ax3.set_yticklabels([])
ax3.grid()
ax4 = plt.subplot(gs1[0,0])
ax5=plt.subplot(gs1[-2,-2])
ax6 = plt.subplot(gs1[-1,-1])
ax6.grid()
sig_gauss=normalized_gaussian(model,x,x0,vrange, noise_type=noise_type,sigma=1, sigma_noise = 1,v0=80,t0=1000,beta=-2.5,delta_v=1e6,delta_t=3600*500,mu=1)
def gaussian(x, mu, sig_gauss):
return 1./(sqrt(2.*pi)*sig_gauss)*np.exp(-np.power((x - mu)/sig_gauss, 2.)/2)
sig_mean =[]
for i in range(len(sig_gauss)):
pairs = (1,sig_gauss[i])
sig_mean.append(pairs)
axagh = []
for mu, sig_gauss in sig_mean:
axsbplt = plt.plot(gaussian(ax4, mu, sig_gauss))
axagh.append(axsbplt)
#ax4.add_figure(axagh[0])
#ax4.grid()
#ax4.plot(mu,f1)
def axes_func(xlim,ylim,fig_axes):
if fig_axes =="fixed":
for i in range(3):
ax1.set_ylim(-ylim,ylim)
ax1.set_xlim(-xlim,xlim)
ax2.set_ylim(-ylim,ylim)
ax2.set_xlim(-xlim,xlim)
ax3.set_ylim(-ylim,ylim)
ax3.set_xlim(-xlim,xlim)
else:
#for i in range(3):
#gs1[i].autoscale()
ax1.autoscale()
ax2.autoscale()
ax3.autoscale()
axes_func(xlim, ylim, fig_axes)
return sig_mean, axag
提前致谢!
答案 0 :(得分:0)
现在你有一种令人困惑的方式来设置高斯人的情节。调用plt.plot
绘制当前活动轴上的绘图,这就是为什么它们都显示在同一图表上的原因。您应该尝试更改代码以将对角线元素绘制为如下所示:
for i, (mu, sig_gauss) in enumerate(sig_mean):
ax = plt.subplot(gs1[i,i])
ax.plot(gaussian(np.linspace(-3, 3, 120), mu, sig_gauss))
ax.grid()
一点解释:对于沿对角线的每个绘图,首先在gridspec上生成最佳轴,然后使用该轴绘图命令绘制高斯。