我想计算numpy ndarray的元素平均值。
In [56]: a = np.array([10, 20, 30])
In [57]: b = np.array([30, 20, 20])
In [58]: c = np.array([50, 20, 40])
我想要的是什么:
[30, 20, 30]
除了矢量化求和除以外,是否有任何内置函数用于此操作?
答案 0 :(得分:31)
您可以直接使用Grid
:
<Grid>
<GroupBox Header="Calibracion" Margin="0,0,0,10">
<Grid>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="5*" /> <!-- Or '*', 'Auto', etc -->
<ColumnDefinition Width="5*" /> <!-- Or '*', 'Auto', etc -->
</Grid.ColumnDefinitions>
<GroupBox Header="Equipo" Grid.Column="0" Grid.Row="0">
<!-- GroupBox contents here -->
</GroupBox>
<GroupBox Header="Patron" Grid.Column="1" Grid.Row="0">
<!-- GroupBox contents here -->
</GroupBox>
<GroupBox Header="Condificones" Grid.Column="0" Grid.Row="1">
<!-- GroupBox contents here -->
</GroupBox>
</Grid>
</GroupBox>
</Grid>
答案 1 :(得分:2)
Pandas DataFrames内置了操作以获取列和行方式。以下代码可以帮助您:
import pandas and numpy
import pandas as pd
import numpy as np
# Define a DataFrame
df = pd.DataFrame([
np.arange(1,5),
np.arange(6,10),
np.arange(11,15)
])
# Get column means by adding the '.mean' argument
# to the name of your pandas Data Frame
# and specifying the axis
column_means = df.mean(axis = 0)
'''
print(column_means)
0 6.0
1 7.0
2 8.0
3 9.0
dtype: float64
'''
# Get row means by adding the '.mean' argument
# to the name of your pandas Data Frame
# and specifying the axis
row_means = df.mean(axis = 1)
'''
print(row_means)
0 2.5
1 7.5
2 12.5
dtype: float64
'''