使用numpy ndarray计算平均值

时间:2013-11-12 16:27:33

标签: python python-2.7 python-3.x numpy

文本文件如下:

david weight_2005 50
david weight_2012 60
david height_2005 150
david height_2012 160
mark weight_2005 90
mark weight_2012 85
mark height_2005 160
mark height_2012 170

如何计算大卫的重量和高度的平均值并标记如下:

david>> mean(weight_2005 and weight_2012), mean (height_2005 and height_2012)
mark>> mean(weight_2005 and weight_2012), mean (height_2005 and height_2012)

我的不完整代码是:

 import numpy as np
 import csv
 with open ('data.txt','r') as infile:
   contents = csv.reader(infile, delimiter=' ')
   c1,c2,c3 = zip(*contents)
   data = np.array(c3,dtype=float)

然后如何申请np.mean ??

4 个答案:

答案 0 :(得分:5)

mean函数用于计算数组数组的平均值。您需要通过将条件应用于c3来找到一种选择c2值的方法。

更适合您需求的是将数据拆分为层次结构,我更喜欢使用词典。像

这样的东西
data = {}
with open('data.txt') as f:
    contents = csv.reader(f, delimiter=' ')
for (name, attribute, value) in contents:
    data[name] = data.get(name, {})  # Default value is a new dict
    attr_name, attr_year = attribute.split('_')
    attr_year = int(attr_year)
    data[name][attr_name] = data[name].get(attr_name, {})
    data[name][attr_name][attr_year] = value

现在data看起来像

{
    "david": {
        "weight": {
            2005: 50,
            2012: 60
        },
        "height": {
            2005: 150,
            2012: 160
        }
    },
    "mark": {
        "weight": {
            2005, 90,
            2012, 85
        },
        "height": {
            2005: 160,
            2012: 170
        }
    }
}

然后你可以做的是

david_avg_weight = np.mean(data['david']['weight'].values())
mark_avg_height = np.mean([v for k, v in data['mark']['height'].iteritems() if 2008 < k])

这里我仍在使用np.mean,但只在普通的Python列表中调用它。

答案 1 :(得分:4)

我会制作这个社区wiki,因为它更“我认为你应该这样做”而不是“这就是你问的问题的答案”。对于这样的事情,我可能会使用pandas而不是numpy,因为它的分组工具要好得多。与基于numpy的方法进行比较也很有用。

import pandas as pd
df = pd.read_csv("data.txt", sep="[ _]", header=None, 
                 names=["name", "property", "year", "value"])
means = df.groupby(["name", "property"])["value"].mean()

..而且,呃,就是这样。


首先,将数据读入DataFrame,让空格或_分开列:

>>> import pandas as pd
>>> df = pd.read_csv("data.txt", sep="[ _]", header=None, 
                 names=["name", "property", "year", "value"])
>>> df
    name property  year  value
0  david   weight  2005     50
1  david   weight  2012     60
2  david   height  2005    150
3  david   height  2012    160
4   mark   weight  2005     90
5   mark   weight  2012     85
6   mark   height  2005    160
7   mark   height  2012    170

然后按nameproperty分组,点击value列,计算平均值:

>>> means = df.groupby(["name", "property"])["value"].mean()
>>> means
name   property
david  height      155.0
       weight       55.0
mark   height      165.0
       weight       87.5
Name: value, dtype: float64

..好吧,sep="[ _]"技巧对于真正的代码来说有点太可爱了,虽然它在这里工作得很好。在实践中,我使用空格分隔符,在第二列中读取property_year,然后执行

df["property"], df["year"] = zip(*df["property_year"].str.split("_"))
del df["property_year"]

允许其他列中的下划线。

答案 2 :(得分:2)

您可以使用以下内容直接在numpy数组中读取数据:

data = np.recfromcsv("data.txt", delimiter=" ", names=['name', 'type', 'value'])

然后你可以用np.where:

找到合适的索引
indices = np.where((data.name == 'david') * data.type.startswith('height'))

并在thoses指数上执行均值:

np.mean(data.value[indices])

答案 3 :(得分:1)

如果您的数据始终采用所提供的格式。然后你可以使用数组切片来做到这一点:

(data[:-1:2] + data[1::2]) / 2

结果:

[  55.   155.    87.5  165. ]