文本文件如下:
david weight_2005 50
david weight_2012 60
david height_2005 150
david height_2012 160
mark weight_2005 90
mark weight_2012 85
mark height_2005 160
mark height_2012 170
如何计算大卫的重量和高度的平均值并标记如下:
david>> mean(weight_2005 and weight_2012), mean (height_2005 and height_2012)
mark>> mean(weight_2005 and weight_2012), mean (height_2005 and height_2012)
我的不完整代码是:
import numpy as np
import csv
with open ('data.txt','r') as infile:
contents = csv.reader(infile, delimiter=' ')
c1,c2,c3 = zip(*contents)
data = np.array(c3,dtype=float)
然后如何申请np.mean ??
答案 0 :(得分:5)
mean
函数用于计算数组数组的平均值。您需要通过将条件应用于c3
来找到一种选择c2
值的方法。
更适合您需求的是将数据拆分为层次结构,我更喜欢使用词典。像
这样的东西data = {}
with open('data.txt') as f:
contents = csv.reader(f, delimiter=' ')
for (name, attribute, value) in contents:
data[name] = data.get(name, {}) # Default value is a new dict
attr_name, attr_year = attribute.split('_')
attr_year = int(attr_year)
data[name][attr_name] = data[name].get(attr_name, {})
data[name][attr_name][attr_year] = value
现在data
看起来像
{
"david": {
"weight": {
2005: 50,
2012: 60
},
"height": {
2005: 150,
2012: 160
}
},
"mark": {
"weight": {
2005, 90,
2012, 85
},
"height": {
2005: 160,
2012: 170
}
}
}
然后你可以做的是
david_avg_weight = np.mean(data['david']['weight'].values())
mark_avg_height = np.mean([v for k, v in data['mark']['height'].iteritems() if 2008 < k])
这里我仍在使用np.mean
,但只在普通的Python列表中调用它。
答案 1 :(得分:4)
我会制作这个社区wiki,因为它更“我认为你应该这样做”而不是“这就是你问的问题的答案”。对于这样的事情,我可能会使用pandas
而不是numpy
,因为它的分组工具要好得多。与基于numpy
的方法进行比较也很有用。
import pandas as pd
df = pd.read_csv("data.txt", sep="[ _]", header=None,
names=["name", "property", "year", "value"])
means = df.groupby(["name", "property"])["value"].mean()
..而且,呃,就是这样。
首先,将数据读入DataFrame
,让空格或_
分开列:
>>> import pandas as pd
>>> df = pd.read_csv("data.txt", sep="[ _]", header=None,
names=["name", "property", "year", "value"])
>>> df
name property year value
0 david weight 2005 50
1 david weight 2012 60
2 david height 2005 150
3 david height 2012 160
4 mark weight 2005 90
5 mark weight 2012 85
6 mark height 2005 160
7 mark height 2012 170
然后按name
和property
分组,点击value
列,计算平均值:
>>> means = df.groupby(["name", "property"])["value"].mean()
>>> means
name property
david height 155.0
weight 55.0
mark height 165.0
weight 87.5
Name: value, dtype: float64
..好吧,sep="[ _]"
技巧对于真正的代码来说有点太可爱了,虽然它在这里工作得很好。在实践中,我使用空格分隔符,在第二列中读取property_year
,然后执行
df["property"], df["year"] = zip(*df["property_year"].str.split("_"))
del df["property_year"]
允许其他列中的下划线。
答案 2 :(得分:2)
您可以使用以下内容直接在numpy数组中读取数据:
data = np.recfromcsv("data.txt", delimiter=" ", names=['name', 'type', 'value'])
然后你可以用np.where:
找到合适的索引indices = np.where((data.name == 'david') * data.type.startswith('height'))
并在thoses指数上执行均值:
np.mean(data.value[indices])
答案 3 :(得分:1)
如果您的数据始终采用所提供的格式。然后你可以使用数组切片来做到这一点:
(data[:-1:2] + data[1::2]) / 2
结果:
[ 55. 155. 87.5 165. ]