在我的项目中,我必须进行几次向量乘法,在double *a
- 向量或float *a
- 向量上完成。为了加快这一点,我想使用SIMD操作或omp
。为了获得最快的结果,我写了一个基准程序:
#include <iostream>
#include <memory>
#include <vector>
#include <omp.h>
#include <immintrin.h>
#include <stdlib.h>
#include <chrono>
#define SIZE 32768
#define ROUNDS 1e5
void multiply_singular(float *a, float *b, float *d)
{
for(int i = 0; i < SIZE; i++)
d[i] = a[i]*b[i];
}
void multiply_omp(float *a, float *b, float *d)
{
#pragma omp parallel for
for(int i = 0; i < SIZE; i++)
d[i] = a[i]*b[i];
}
void multiply_avx(float *a, float *b, float *d)
{
__m256 a_a, b_a, c_a;
for(int i = 0; i < SIZE/8; i++)
{
a_a = _mm256_loadu_ps(a+8*i);
b_a = _mm256_loadu_ps(b+8*i);
c_a = _mm256_mul_ps(a_a, b_a);
_mm256_storeu_ps (d+i*8, c_a);
}
}
void multiply_avx_omp(float *a, float *b, float *d)
{
__m256 a_a, b_a, c_a;
#pragma omp for
for(int i = 0; i < SIZE/8; i++)
{
a_a = _mm256_loadu_ps(a+8*i);
b_a = _mm256_loadu_ps(b+8*i);
c_a = _mm256_mul_ps(a_a, b_a);
_mm256_storeu_ps (d+i*8, c_a);
}
}
void multiply_singular_double(double *a, double *b, double *d)
{
for(int i = 0; i < SIZE; i++)
d[i] = a[i]*b[i];
}
void multiply_omp_double(double *a, double *b, double *d)
{
#pragma omp parallel for
for(int i = 0; i < SIZE; i++)
d[i] = a[i]*b[i];
}
void multiply_avx_double(double *a, double *b, double *d)
{
__m256d a_a, b_a, c_a;
for(int i = 0; i < SIZE/4; i++)
{
a_a = _mm256_loadu_pd(a+4*i);
b_a = _mm256_loadu_pd(b+4*i);
c_a = _mm256_mul_pd(a_a, b_a);
_mm256_storeu_pd (d+i*4, c_a);
}
}
void multiply_avx_double_omp(double *a, double *b, double *d)
{
__m256d a_a, b_a, c_a;
#pragma omp parallel for
for(int i = 0; i < SIZE/4; i++)
{
a_a = _mm256_loadu_pd(a+4*i);
b_a = _mm256_loadu_pd(b+4*i);
c_a = _mm256_mul_pd(a_a, b_a);
_mm256_storeu_pd (d+i*4, c_a);
}
}
int main()
{
float *a, *b, *c, *d, *e, *f;
double *a_d, *b_d, *c_d, *d_d, *e_d, *f_d;
a = new float[SIZE] {0};
b = new float[SIZE] {0};
c = new float[SIZE] {0};
d = new float[SIZE] {0};
e = new float[SIZE] {0};
f = new float[SIZE] {0};
a_d = new double[SIZE] {0};
b_d = new double[SIZE] {0};
c_d = new double[SIZE] {0};
d_d = new double[SIZE] {0};
e_d = new double[SIZE] {0};
f_d = new double[SIZE] {0};
for(int i = 0; i < SIZE; i++)
{
a[i] = i;
b[i] = i;
a_d[i] = i;
b_d[i] = i;
};
std::cout << "Now doing the single float rounds!\n";
std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now();
for(int i = 0; i < ROUNDS; i++)
{
multiply_singular(a, b, c);
}
std::chrono::high_resolution_clock::time_point t2 = std::chrono::high_resolution_clock::now();
auto duration_ss = std::chrono::duration_cast<std::chrono::microseconds>(t2-t1).count();
std::cout << "Now doing the omp float rounds!\n";
t1 = std::chrono::high_resolution_clock::now();
for(int i = 0; i < ROUNDS*10; i++)
{
multiply_omp(a, b, d);
};
t2 = std::chrono::high_resolution_clock::now();
auto duration_so = std::chrono::duration_cast<std::chrono::microseconds>(t2-t1).count();
std::cout << "Now doing the avx float rounds!\n";
t1 = std::chrono::high_resolution_clock::now();
for(int i = 0; i < ROUNDS*10; i++)
{
multiply_avx(a, b, e);
};
t2 = std::chrono::high_resolution_clock::now();
auto duration_sa = std::chrono::duration_cast<std::chrono::microseconds>(t2-t1).count();
std::cout << "Now doing the avx omp float rounds!\n";
t1 = std::chrono::high_resolution_clock::now();
for(int i = 0; i < ROUNDS*10; i++)
{
multiply_avx_omp(a, b, e);
};
t2 = std::chrono::high_resolution_clock::now();
auto duration_sao = std::chrono::duration_cast<std::chrono::microseconds>(t2-t1).count();
std::cout << "Now doing the single double rounds!\n";
t1 = std::chrono::high_resolution_clock::now();
for(int i = 0; i < ROUNDS; i++)
{
multiply_singular_double(a_d, b_d, c_d);
};
t2 = std::chrono::high_resolution_clock::now();
auto duration_ds = std::chrono::duration_cast<std::chrono::microseconds>(t2-t1).count();
std::cout << "Now doing the omp double rounds!\n";
t1 = std::chrono::high_resolution_clock::now();
for(int i = 0; i < ROUNDS*10; i++)
{
multiply_omp_double(a_d, b_d, d_d);
};
t2 = std::chrono::high_resolution_clock::now();
auto duration_do = std::chrono::duration_cast<std::chrono::microseconds>(t2-t1).count();
std::cout << "Now doing the avx double rounds!\n";
t1 = std::chrono::high_resolution_clock::now();
for(int i = 0; i < ROUNDS*10; i++)
{
multiply_avx_double(a_d, b_d, e_d);
};
t2 = std::chrono::high_resolution_clock::now();
auto duration_da = std::chrono::duration_cast<std::chrono::microseconds>(t2-t1).count();
std::cout << "Now doing the avx omp double rounds!\n";
t1 = std::chrono::high_resolution_clock::now();
for(int i = 0; i < ROUNDS*10; i++)
{
multiply_avx_double_omp(a_d, b_d, f_d);
};
t2 = std::chrono::high_resolution_clock::now();
auto duration_dao = std::chrono::duration_cast<std::chrono::microseconds>(t2-t1).count();
std::cout << "Finished\n";
std::cout << "Elapsed time for functions:\n";
std::cout << "Function\ttime[ms]\n";
std::cout << "Singular float:\t" << duration_ss/ROUNDS << '\n';
std::cout << "OMP float:\t" << duration_so/(ROUNDS*10) << '\n';
std::cout << "AVX float avx:\t" << duration_sa/(ROUNDS*10) << '\n';
std::cout << "OMP AVX float avx omp:\t" << duration_sao/(ROUNDS*10) << '\n';
std::cout << "Singular double:\t" << duration_ds/ROUNDS << '\n';
std::cout << "OMP double:\t" << duration_do/(ROUNDS*10) << '\n';
std::cout << "AVX double:\t" << duration_da/(ROUNDS*10) << '\n';
std::cout << "OMP AVX double:\t" << duration_dao/(ROUNDS*10) << '\n';
delete[] a;
delete[] b;
delete[] c;
delete[] d;
delete[] e;
delete[] f;
delete[] a_d;
delete[] b_d;
delete[] c_d;
delete[] d_d;
delete[] e_d;
delete[] f_d;
return 0;
}
用g++-5 -fopenmp -std=c++14 -march=native test_new.cpp -o test -lgomp
编译时,我得到了
Elapsed time for functions:
Function time[ms]
Singular float: 117.979
OMP float: 40.5385
AVX float avx: 60.2964
OMP AVX float avx omp: 61.4206
Singular double: 129.59
OMP double: 200.745
AVX double: 136.715
OMP AVX double: 122.176
或第二次运行
Elapsed time for functions:
Function time[ms]
Singular float: 113.932
OMP float: 39.2581
AVX float avx: 58.3029
OMP AVX float avx omp: 60.0023
Singular double: 123.575
OMP double: 66.0327
AVX double: 124.293
OMP AVX double: 318.038
这里显然纯omp
- 函数比其他函数更快,即使是AVX函数。将-O3
- 开关添加到编译行时,我得到以下结果:
Elapsed time for functions:
Function time[ms]
Singular float: 12.7361
OMP float: 4.82436
AVX float avx: 14.7514
OMP AVX float avx omp: 14.7225
Singular double: 27.9976
OMP double: 8.50957
AVX double: 32.5175
OMP AVX double: 257.219
此处omp
再次显着快于其他所有内容,而AVX速度最慢,甚至比线性方法慢。这是为什么?我的AVX功能实现是不是很糟糕,还是有其他问题?
在Ubuntu 14.04.1,i7 Sandy Bridge,gcc 5.3.0版本上执行。
编辑:我发现了一个错误:我应该移动avx
中的临时变量的声明 - for循环中的函数,这使我几乎达到omp
级别(并传递)正确的结果)。
编辑2:当禁用-O3
- 切换时,OMP
- AVX
- 指令比OMP
- 指令更快,其开关几乎为-O3
参数
编辑3:每次在执行下一个循环之前用随机数据填充数组时,我得到(使用Elapsed time for functions:
Function time[ms]
Singular float: 30.742
Cilk float: 24.0769
OMP float: 17.2415
AVX float avx: 33.0217
OMP AVX float avx omp: 10.1934
Singular double: 60.412
Cilk double: 34.6458
OMP double: 19.0739
AVX double: 66.8676
OMP AVX double: 22.3586
):
Elapsed time for functions:
Function time[ms]
Singular float: 274.402
Cilk float: 88.258
OMP float: 66.2124
AVX float avx: 117.066
OMP AVX float avx omp: 35.0313
Singular double: 238.652
Cilk double: 91.1667
OMP double: 127.621
AVX double: 249.516
OMP AVX double: 116.24
且没有:
#pragma omp parallel for simd
(我添加了一个cilk_for() - 循环进行比较)。
更新:
我添加了(如答案中所建议的)使用Elapsed time for functions:
Function time[ms]
Singular float: 106.081
Cilk float: 33.2761
OMP float: 17.0651
AVX float avx: 65.1129
OMP AVX float: 19.1496
SIMD OMP float: 2.6095
Aligned AVX OMP float: 18.1165
Singular double: 118.939
Cilk double: 53.1102
OMP double: 35.652
AVX double: 131.24
OMP AVX double: 39.4377
SIMD OMP double: 7.0748
Aligned AVX OMP double: 38.4474
的函数。
结果导致:
static List<Item> GetFailedItems(List<Order> orders, List<Item> items)
{
var failed = from order in orders
where !order.Fulfilled
join item in items on order.Name equals item.Name
select new { order, item};
List<Item> failedItems = new List<Item>();
foreach (var x in failed)
{
x.item.FailMessage = x.order.FailMessage;
failedItems.Add(x.item);
}
return failedItems;
}
答案 0 :(得分:4)
如果编译器支持OpenMP 4.x ,您可能需要从以下内容开始:
void multiply_singular_omp_for_simd(float *a, float *b, float *d)
{
#pragma omp parallel for simd schedule (static,16)
for(int i = 0; i < SIZE; i++)
d[i] = a[i]*b[i];
}
它将为您提供SIMD和线程并行性。并行分解将自动完成,首先将并行任务/块分布在线程/核心上,其次是每个任务/块传播“跨越”simd“通道”的单个迭代。
如果您感到担心,请阅读给定的情侣文章: Threading and SIMD in OpenMP4,ICC documentation。
正式表达你的问题的方式有点含糊不清,因为从4.0开始,OMP循环可能是SIMD,线程或SIMD +线程并行。所以它不再是关于OMP与SIMD的关系了。相反,它是关于OMP SIMD与OMP线程。
不确定你给定的GCC实现有多好,但ICC / IFORT可以在相当长的时间内处理用于simd的omp并行。 GCC也应该从5.x开始支持它(#pragma omp simd得到了GCC的支持已经有一段时间了,但对于simd来说,#pragma omp parallel并不是必需的。)
对于最佳的编译器驱动实现,理想情况下,您可能更喜欢执行缓存阻塞并手动拆分迭代空间,以便通过omp并行驱动外部循环,而最内层循环由omp simd驱动。但这可能略微超出原始问题的范围。