R中使用SVM的预测误差

时间:2016-05-24 05:46:52

标签: r svm prediction

我在包" e1071",

中使用了SVM功能

第一个问题是,当我尝试预测的行数少于我训练过的行数时,会出现以下错误:

td = wholeData[1:10000,]
model <- svm(Type~.,data = td,type="C-classification")
x =wholeData[1:5000,]
p=predict(model,x)
  

newdata [,对象$ scaled,drop = FALSE]出错:          (下标)逻辑下标太长

第二个问题是当我尝试使用大量行时,它会给出以下消息: &#34;错误:无法分配大小为6.6 Gb的矢量&#34; 我不知道要克服这个问题。

td=wholeData[1:100000,]
model1=svm(Type~.,data = td)
  

错误:无法分配大小为6.6 Gb的向量        另外:警告信息:        1:在model.matrix.default(Terms,m)中:          达到5849Mb的总分配:见帮助(memory.size)        2:在model.matrix.default(Terms,m)中:          达到5849Mb的总分配:见帮助(memory.size)        3:在model.matrix.default(Terms,m)中:          达到5849Mb的总分配:见帮助(memory.size)        4:在model.matrix.default(Terms,m)中:          达到5849Mb的总分配:见帮助(memory.size)

数据结构如下

str(wholeData)
'data.frame':   550116 obs. of  8 variables:
 $ Text   : chr  "IL-2" "gene" "expression" "and" ...
 $ wLength: int  4 4 10 3 8 1 10 7 4 8 ...
 $ Cap    : int  1 0 0 0 1 1 0 0 1 0 ...
 $ Digit  : int  1 0 0 0 0 0 0 0 1 0 ...
 $ POS    : int  11 20 20 9 21 21 20 14 11 40 ...
 $ Type   : Factor w/ 11 levels "1","2","3","4",..: 3 8 11 11 4 9 11 11 4 11 ...
 $ idf    : num  3.2 1.7 1.53 1.01 2.96 2.13 1.73 2.63 4.89 3.94 ...
 $ isword : int  0 1 1 1 0 1 1 1 0 1 ... 

0 个答案:

没有答案