在Haskell

时间:2016-05-23 10:28:58

标签: haskell types gadt type-level-computation data-kinds

我正在尝试做一些高级的类型级编程;该示例是我原始程序的简化版本。

我有(Haskell)类型的表示。在这个例子中,我只介绍函数类型,基本类型和类型变量。

表示Type t由一个类型变量t参数化,以允许区分类型级别。为实现这一目标,我主要使用GADT。通过使用类型级文字来区分不同的类型和类型变量,因此KnownSymbol约束和Proxy s的使用。

{-# LANGUAGE GADTs, TypeOperators, DataKinds, KindSignatures, TypeFamilies, PolyKinds #-}

import GHC.TypeLits
import Data.Proxy
import Data.Type.Equality

data Type :: TypeKind -> * where
  TypeFun    :: Type a -> Type b -> Type (a :-> b)
  Type       :: KnownSymbol t => Proxy t -> Type (Ty t)
  TypeVar    :: KnownSymbol t => Proxy t -> Type (TyVar t)

我还通过使用DataKinds和KindSignatures扩展并定义t数据类型来限制TypeKind的类型TypeKind

data TypeKind =
    Ty Symbol
  | TyVar Symbol
  | (:->) TypeKind TypeKind

现在我想实现类型变量的替换,即在类型t内替换等于类型变量x的每个变量y,类型为{{1 }}。替换必须在表示上以及在类型级别上实现。对于后者,我们需要TypeFamilies:

t'

类型变量是有趣的部分,因为我们检查类型级别上符号type family Subst (t :: TypeKind) (y :: Symbol) (t' :: TypeKind) :: TypeKind where Subst (Ty t) y t' = Ty t Subst (a :-> b) y t' = Subst a y t' :-> Subst b y t' Subst (TyVar x) y t' = IfThenElse (x == y) t' (TyVar x) x的相等性。为此,我们还需要一个(poly-kinded)类型族,它允许我们在两个结果之间进行选择:

y

不幸的是,这还没有编译,这可能是我问题的第一个指标:

type family IfThenElse (b :: Bool) (x :: k) (y :: k) :: k where
  IfThenElse True  x y = x
  IfThenElse False x y = y

启用UndecidableInstances扩展可以正常工作,因此我们继续定义一个适用于价值级别的函数Nested type family application in the type family application: IfThenElse (x == y) t' ('TyVar x) (Use UndecidableInstances to permit this) In the equations for closed type family ‘Subst’ In the type family declaration for ‘Subst’

subst

此代码完美无缺,但产生以下编译错误的最后一行除外:

subst :: (KnownSymbol y) => Type t -> Proxy (y :: Symbol) -> Type t' -> Type (Subst t y t')
subst (TypeFun a b) y t = TypeFun (subst a y t) (subst b y t)
subst t@(Type _) _ _    = t
subst t@(TypeVar x) y t'
  | Just Refl <- sameSymbol x y = t'
  | otherwise                   = t

我想问题是我无法证明两个符号Could not deduce (IfThenElse (GHC.TypeLits.EqSymbol t1 y) t' ('TyVar t1) ~ 'TyVar t1) from the context (t ~ 'TyVar t1, KnownSymbol t1) bound by a pattern with constructor TypeVar :: forall (t :: Symbol). KnownSymbol t => Proxy t -> Type ('TyVar t), in an equation for ‘subst’ at Type.hs:29:10-18 Expected type: Type (Subst t y t') Actual type: Type t Relevant bindings include t' :: Type t' (bound at Type.hs:29:23) y :: Proxy y (bound at Type.hs:29:21) x :: Proxy t1 (bound at Type.hs:29:18) subst :: Type t -> Proxy y -> Type t' -> Type (Subst t y t') (bound at Type.hs:27:1) In the expression: t In an equation for ‘subst’: subst t@(TypeVar x) y t' | Just Refl <- sameSymbol x y = t' | otherwise = t x的类型的不等式,并且需要某种类型不等式见证。这可能吗?或者是否有另一种更好的方法来实现我的目标? 我不知道问题'idiomatic' Haskell type inequalityCan GADTs be used to prove type inequalities in GHC?在多大程度上已经回答了我的问题。任何帮助将不胜感激。

1 个答案:

答案 0 :(得分:2)

正如志在评论中所说,你需要的是Either ((x==y) :~: True) ((x==y) :~: False)。不幸的是,类型文字当前部分被破坏了,这是我们只能用unsafeCoerce做的事情之一(尽管在道德上可以接受)。

sameSymbol' ::
  (KnownSymbol s, KnownSymbol s') =>
  Proxy s -> Proxy s'
  -> Either ((s == s') :~: True) ((s == s') :~: False)
sameSymbol' s s' = case sameSymbol s s' of
  Just Refl -> Left Refl
  Nothing   -> Right (unsafeCoerce Refl)

subst :: (KnownSymbol y) => Type t -> Proxy (y :: Symbol) -> Type t' -> Type (Subst t y t')
subst (TypeFun a b) y t = TypeFun (subst a y t) (subst b y t)
subst t@(Type _) _ _    = t
subst t@(TypeVar x) y t' = case sameSymbol' x y of
  Left  Refl -> t'
  Right Refl -> t

另一方面,如果你不介意一些模板Haskell,singletons库可以推导出你的定义(以及更多):

{-# language GADTs, TypeOperators, DataKinds, KindSignatures, TypeFamilies, PolyKinds #-}
{-# language UndecidableInstances, ScopedTypeVariables, TemplateHaskell, FlexibleContexts #-}

import GHC.TypeLits
import Data.Singletons.TH
import Data.Singletons.Prelude

singletons([d|
  data Type sym
    = Ty sym
    | TyVar sym
    | Type sym :-> Type sym

  subst :: Eq sym => Type sym -> sym -> Type sym -> Type sym
  subst (Ty t) y t'    = Ty t
  subst (a :-> b) y t' = subst a y t' :-> subst b y t'
  subst (TyVar x) y t' = if x == y then t' else TyVar x        
  |])

这为我们提供了Typesubst的类型,种类和价值级别定义。例子:

-- some examples

-- type level
type T1 = Ty "a" :-> TyVar "b"
type T2 = Subst T1 "b" (Ty "c") -- this equals (Ty "a" :-> Ty "c")

-- value level

-- automatically create value-level representation of T1
t1  = sing :: Sing T1

-- or write it out by hand
t1' = STy (sing :: Sing "a") :%-> STyVar (sing :: Sing "b")

-- use value-level subst on t1:
t2 = sSubst t1 (sing :: Sing "b") (STy (sing :: Sing "c"))

-- or generate result from type-level representation
t2' = sing :: Sing (Subst T1 "b" (Ty "c"))

-- Convert singleton to non-singleton (and print it)
t3 :: Type String
t3 = fromSing t2 -- Ty "a" :-> Ty "c"