我希望比较两个图像,使用直方图匹配和方法相关性。
显然,这两个图像是相似的。然后,我尝试找出与以下代码的相关性。
import cv2
import numpy as np
#reading the images and convert them to HSV
base = cv2.imread('base.jpg')
test1 = cv2.imread('test1.jpg')
basehsv = cv2.cvtColor(base,cv2.COLOR_BGR2HSV)
test1hsv = cv2.cvtColor(test1,cv2.COLOR_BGR2HSV)
# Calculate the Hist for each images
histbase = cv2.calcHist(basehsv,[0,1],None,[180,256],ranges)
cv2.normalize(histbase,histbase,0,255,cv2.NORM_MINMAX)
histtest1 = cv2.calcHist(test1hsv,[0,1],None,[180,256],ranges)
cv2.normalize(histtest1,histtest1,0,255,cv2.NORM_MINMAX)
# Compare two Hist. and find out the correlation value
base_test1 = cv2.compareHist(histbase,histtest1,0)
print base_test1
但是,打印出的结果只是0.05xxx
。
为什么相关性如此之小?
如何改善结果?谢谢。
答案 0 :(得分:0)
绘制 HSV 直方图时,您会注意到两个问题:
minmax
归一化效果不佳,因为基础图像的最终 bin 中出现了大尖峰。代码:
import cv2
import numpy as np
import matplotlib.pyplot as plt
# Get HSV images
base = cv2.imread("base.jpg")
test = cv2.imread("test1.jpg")
basehsv = cv2.cvtColor(base, cv2.COLOR_BGR2HSV)
testhsv = cv2.cvtColor(test, cv2.COLOR_BGR2HSV)
# Calculate historgrams
hist_base_h = cv2.calcHist(basehsv, [0], None, [180], [0, 180])
hist_base_s = cv2.calcHist(basehsv, [1], None, [256], [0, 256])
hist_base_v = cv2.calcHist(basehsv, [2], None, [256], [0, 256])
hist_test_h = cv2.calcHist(test, [0], None, [180], [0, 180])
hist_test_s = cv2.calcHist(test, [1], None, [256], [0, 256])
hist_test_v = cv2.calcHist(test, [2], None, [256], [0, 256])
# Plot histograms
fig, axs = plt.subplots(3, 1)
axs[0].plot(hist_base_h, "b-", label="Hue base")
axs[0].plot(hist_test_h, "b:", label="Hue test")
axs[1].plot(hist_base_s, "r-", label="Saturation base")
axs[1].plot(hist_test_s, "r:", label="Saturation test")
axs[2].plot(hist_base_v, "g-", label="Value base")
axs[2].plot(hist_test_v, "g:", label="Value test")
axs[0].set_title("HSV Histograms")
axs[0].legend(loc="upper left")
axs[1].legend(loc="upper left")
axs[2].legend(loc="upper left")
fig.show()