require 'torch';
require 'nn';
require 'nnx';
mnist = require 'mnist';
fullset = mnist.traindataset()
testset = mnist.testdataset()
trainset = {
size = 50000,
data = fullset.data[{{1,50000}}]:double(),
label = fullset.label[{{1,50000}}]
}
validationset = {
size = 10000,
data = fullset.data[{{50001, 60000}}]:double(),
label = fullset.label[{{50001,60000}}]
}
-- MNIST Dataset has 28x28 images
model = nn.Sequential()
model:add(nn.SpatialConvolutionMM(1, 32, 5, 5)) -- 32x24x24
model:add(nn.ReLU())
model:add(nn.SpatialMaxPooling(3, 3, 3, 3)) -- 32x8x8
model:add(nn.SpatialConvolutionMM(32, 64, 5, 5)) -- 64x4x4
model:add(nn.Tanh())
model:add(nn.SpatialMaxPooling(2, 2, 2, 2)) -- 64x2x2
model:add(nn.Reshape(64*2*2))
model:add(nn.Linear(64*2*2, 200))
model:add(nn.Tanh())
model:add(nn.Linear(200, 10))
model:add(nn.LogSoftMax())
criterion = nn.ClassNLLCriterion()
x, dldx = model:getParameters() -- now x stores the trainable parameters and dldx stores the gradient wrt these params in the model above
sgd_params = {
learningRate = 1e-2,
learningRateDecay = 1e-4,
weightDecay = 1e-3,
momentum = 1e-4
}
step = function ( batchsize )
-- setting up variables
local count = 0
local current_loss = 0
local shuffle = torch.randperm(trainset.size)
-- setting default batchsize as 200
batchsize = batchsize or 200
-- setting inputs and targets for minibatches
for minibatch_number = 1, trainset.size, batchsize do
local size = math.min( trainset.size - minibatch_number + 1, batchsize )
local inputs = torch.Tensor(size, 28, 28)
local targets = torch.Tensor(size)
for index = 1, size do
inputs[index] = trainset.data[ shuffle[ index + minibatch_number ]]
targets[index] = trainset.label[ shuffle[ index + minibatch_number ] ]
end
-- defining feval function to return loss and gradients of loss w.r.t. params
feval = function( x_new )
--print ( "---------------------------------safe--------------------")
if x ~= x_new then x:copy(x_new) end
-- initializing gradParsams to zero
dldx:zero()
-- calculating loss and param gradients
local loss = criterion:forward( model.forward( inputs ), targets )
model:backward( inputs, criterion:backward( model.output, targets ) )
return loss, dldx
end
-- getting loss
-- optim returns x*, {fx} where x* is new set of params and {fx} is { loss } => fs[ 1 ] carries loss from feval
print(feval ~= nil and x ~= nil and sgd_params ~= nil)
_,fs = optim.sgd(feval, x, sgd_params)
count = count + 1
current_loss = current_loss + fs[ 1 ]
end
--returning avg loss over the minibatch
return current_loss / count
end
max_iters = 30
for i = 1 ,max_iters do
local loss = step()
print(string.format('Epoch: %d Current loss: %4f', i, loss))
end
我是火炬手和lua的新手,我无法在上面的代码中找到错误。任何人都可以建议一种调试方法吗?
错误:
/home/afroz/torch/install/bin/luajit: /home/afroz/test.lua:88: attempt to index global 'optim' (a nil value)
stack traceback:
/home/afroz/test.lua:88: in function 'step'
/home/afroz/test.lua:102: in main chunk
[C]: in function 'dofile'
...froz/torch/install/lib/luarocks/rocks/trepl/scm-1/bin/th:145: in main chunk
[C]: at 0x00406670
答案 0 :(得分:2)
optim未在脚本范围内定义。您尝试调用optim.sgd,这当然会导致您看到的错误。
与nn一样,optim是火炬的扩展包。
require 'torch';
require 'nn';
require 'nnx';
还记得脚本开头的那些行吗?它们基本上执行这些包的定义。 确保安装了optim,然后尝试要求它。
答案 1 :(得分:1)
optim
未在脚本中的任何位置分配,因此当脚本引用optim.sgd
时,其值为nil
,您将收到显示的错误。您需要重新检查脚本以确保为optim
分配了正确的值。