我处于一种情况,我需要在一系列极大的字符串中找到一个整数子字符串。我想到使用向量向量来存储整数字符串的范围,同样我将要搜索的整数字符串存储在向量中。示例如下:
//vector of 5 vectors
std::vector<std::vector<int>> vec(5);
// elements= {10,5,8,23,15,32,12,34,56,55,43,12,33,4}
将子字符串转换为vector
//vector with integer substring
std::vector<int> vec1;
//elements = {5,8,23}
我使用std::search
对vector of vectors
执行搜索操作以找到vector
,类似这样的
for( int i = 0; i < vec.size(); i++) // searching read into
{
auto pos = std::search(vec[i].begin(), vec[i].end(), vec1.begin(), vec1.end());
// some more code
}
在测试时,我需要1m
从1000 strings
范围10 vectors
搜索500000
长度unordered_map
。
有一些超快的数据结构,如container
,但我怀疑是否将数据结构用于我的数据。非常感谢任何有关时间和空间效率的data structure
或100000000
的建议或链接。
注意:
1)不可能对数据进行排序,因为我通过排序来松散数据表示。
2)我不是在寻找单个项目,实际上是整数的子串。
修改
每个向量中字符串的原始长度可以是100
,子串的长度可以是1million
,bind_addr=match-address=127.2.\*
。
答案 0 :(得分:1)
这是我尝试快速解决方案 - 在我的2.7GHz Mac mini上,它可以找到1000&#34;子串的位置&#34;在1357毫秒。它通过首先构建每个整数出现在大向量中的所有位置的索引来实现这一点,这样对于每个子串,它不必在任何地方搜索,而是仅在那个子串可能实际存在的位置开始。需要注意的是索引占用了相当多的额外RAM,并且需要一些时间来构建;所以这可能是也可能不是一个实际的解决方案,具体取决于您的使用案例。 (但请注意,它只需要构建一次,除非/直到你继续搜索一组不同的大向量)
#include <algorithm>
#include <vector>
#include <cmath>
#include <cstdint>
#include <chrono>
#include <iostream>
#include <unordered_map>
using namespace std;
// Store a vector index and an offset into the vector efficiently
// Supports up to 256 vectors and offsets up to 16777216
static inline uint32_t GetVectorLocationKey(uint8_t whichVector, uint32_t offsetIntoVector)
{
return ((((uint32_t)whichVector)<<24)|offsetIntoVector);
}
static inline void GetVectorLocationFromKey(uint32_t key, uint8_t & retWhichVector, uint32_t & retOffsetIntoVector)
{
retWhichVector = (key >> 24) & 0xFF;
retOffsetIntoVector = (key & 0xFFFFFF);
}
static inline bool SubstringExistsAtOffset(const int * bigVector, const vector<int> & substring)
{
const int * smallVector = &substring[0];
const size_t subLen = substring.size();
for (size_t i=0; i<subLen; i++) if (bigVector[i] != smallVector[i]) return false;
return true;
}
int main(int, char **)
{
// Create some large vectors to search in
vector<vector<int> > big_vectors;
const size_t num_big_vectors = 5;
const size_t big_vector_size = 500000;
for (size_t i=0; i<num_big_vectors; i++)
{
big_vectors.push_back(vector<int>());
vector<int> & v = big_vectors.back();
for (size_t j=0; j<big_vector_size; j++) v.push_back(rand()%100);
}
// Pick out some small "substring" vectors to search for within the large vectors
vector<vector<int> > substrings;
const size_t num_substrings = 1000;
const size_t substring_size = 14;
for (size_t i=0; i<num_substrings; i++)
{
substrings.push_back(vector<int>());
size_t whichBigVector = rand()%num_big_vectors;
size_t offsetIntoVector = rand()%(big_vector_size-substring_size);
vector<int> & v = substrings.back();
const vector<int> & bigVector = big_vectors[whichBigVector];
for (size_t j=0; j<substring_size; j++) v.push_back(bigVector[offsetIntoVector+j]);
}
// Now we'll build up a map so that for any given integer we'll
// have immediate access to a list of the locations it is at.
// That way we can jump immediately to those locations rather than
// having to scan through the entire set of big_vectors
unordered_map<int, vector<uint32_t> > index;
for (size_t i=0; i<big_vectors.size(); i++)
{
const vector<int> & bigVector = big_vectors[i];
for (size_t j=0; j<bigVector.size()-substring_size; j++)
{
int val = bigVector[j];
index[val].push_back(GetVectorLocationKey(i, j));
}
}
// Now for the time-critical part: Let's see how fast we
// can find our substrings within the larger vectors!
std::chrono::steady_clock::time_point begin = std::chrono::steady_clock::now();
vector<vector<uint32_t> > results;
for (size_t i=0; i<substrings.size(); i++)
{
results.push_back(vector<uint32_t>());
vector<uint32_t> & resultVec = results.back();
const vector<int> & substring = substrings[i];
const int firstVal = substring[0];
const vector<uint32_t> & lookup = index[firstVal];
for (size_t j=0; j<lookup.size(); j++)
{
const uint32_t key = lookup[j];
uint8_t whichVector;
uint32_t offsetIntoVector;
GetVectorLocationFromKey(key, whichVector, offsetIntoVector);
const vector<int> & bigVector = big_vectors[whichVector];
if (SubstringExistsAtOffset(&bigVector[offsetIntoVector], substring)) resultVec.push_back(key);
}
}
std::chrono::steady_clock::time_point end = std::chrono::steady_clock::now();
cout << " Total time spent finding " << substrings.size() << " substrings was " << std::chrono::duration_cast<std::chrono::milliseconds>(end-begin).count() << " milliseconds." << std::endl;
cout << endl << endl << "RESULTS:" << endl;
for(size_t i=0; i<results.size(); i++)
{
const vector<uint32_t> & result = results[i];
for (size_t j=0; j<result.size(); j++)
{
const uint32_t key = result[j];
uint8_t whichVector;
uint32_t offsetIntoVector;
GetVectorLocationFromKey(key, whichVector, offsetIntoVector);
cout << "An instance of substring #" << i << " was found in bigVector #" << (int)whichVector << " at offset " << offsetIntoVector << endl;
// Let's just double-check that the substring actually exists where I said it did
// It would be embarrassing to find out I'm not actually finding them correctly :P
const vector<int> & bigVector = big_vectors[whichVector];
const vector<int> & substring = substrings[i];
for (size_t k=0; k<substring.size(); k++)
{
if (bigVector[offsetIntoVector+k] != substring[k]) cout << "ERROR BAD RESULT in substring #" << i << " at offset " << k << endl;
}
}
}
}