我有一个曾经是数据库格式的数据框(不是我的选择),这可以通过本示例中对行而不是列的关注来证明。
df = pd.DataFrame([['John','Sept',1,'Dec',2],['Jane','Sept',1,'Dec',3],['James','Sept',2,'Dec',2]],columns=['Name','Test 1','Score 1','Test 2','Score 2'])
Name Test 1 Score 1 Test 2 Score 2
0 John Sept 1 Dec 2
1 Jane Sept 1 Dec 3
2 James Sept 2 Dec 2
我想将其转换为此格式。
Name Test Date Score
0 Joe 1 Sept 1
1 Joe 2 Dec 2
3 Jane 1 Sept 1
4 Jane 2 Dec 3
6 James 1 Sept 2
7 James 2 Dec 2
所以基本上我想合并测试列,以便它们在Name列上分组。到目前为止,我已经看过melt()和unstack(),这让我得到了我想要的东西:
melt = pd.melt(df,id_vars=['Name','1st Test'])
Name Test 1 variable value
0 John Sept Score 1 1
1 Jane Sept Score 1 1
2 James Sept Score 1 2
3 John Sept Test 2 Dec
4 Jane Sept Test 2 Dec
5 James Sept Test 2 Dec
6 John Sept Score 2 2
7 Jane Sept Score 2 3
8 James Sept Score 2 2
我非常确定groupby,melt或unstack会让我在那里,但我无法正确理解语法。建议将不胜感激。
背景:我认为(我希望)这种新格式可以让我绘制得分与测试时间的变化。
答案 0 :(得分:2)
您可以将lreshape
与sort_values
:
df['T1'] = 1
df['T2'] = 2
df = (pd.lreshape(df, {'Test': ['T1', 'T2'],
'Date': ['Test 1', 'Test 2'],
'Score': ['Score 1', 'Score 2']}))
#reorder columns, sort dataframe by Name
df = df[['Name','Test','Date','Score']].sort_values('Name', ascending=False)
print (df)
Name Test Date Score
0 John 1 Sept 1
3 John 2 Dec 2
1 Jane 1 Sept 1
4 Jane 2 Dec 3
2 James 1 Sept 2
5 James 2 Dec 2
pd.lreshape
没有很好的文档记录,但您可以使用:
In [95]: help (pd.lreshape)
In [96]: Help on function lreshape in module pandas.core.reshape:
lreshape(data, groups, dropna=True, label=None)
Reshape long-format data to wide. Generalized inverse of DataFrame.pivot
Parameters
----------
data : DataFrame
groups : dict
{new_name : list_of_columns}
dropna : boolean, default True
Examples
--------
>>> import pandas as pd
>>> data = pd.DataFrame({'hr1': [514, 573], 'hr2': [545, 526],
... 'team': ['Red Sox', 'Yankees'],
... 'year1': [2007, 2008], 'year2': [2008, 2008]})
>>> data
hr1 hr2 team year1 year2
0 514 545 Red Sox 2007 2008
1 573 526 Yankees 2007 2008
>>> pd.lreshape(data, {'year': ['year1', 'year2'], 'hr': ['hr1', 'hr2']})
team hr year
0 Red Sox 514 2007
1 Yankees 573 2007
2 Red Sox 545 2008
3 Yankees 526 2008
Returns
-------
reshaped : DataFrame
答案 1 :(得分:0)
可能有一些方法可以使用这些功能,但你可以在没有它们的情况下将它分成两个数据帧,然后用append()堆叠它们。
df = pd.DataFrame([['John','Sept',1,'Dec',2],['Jane','Sept',1,'Dec',3],['James','Sept',2,'Dec',2]],columns=['Name','Test 1','Score 1','Test 2','Score 2'])
# split off frame 1
df1 = df.loc[:,['Name','Test 1','Score 1']]
df1.columns = ['Name','Date','Score']
df1['Test'] = 1
df1
Out[4]:
Name Date Score Test
John Sept 1 1
Jane Sept 1 1
James Sept 2 1
# split off frame 2
df2 = df.loc[:,['Name','Test 2','Score 2
df2 = df.loc[:,['Name','Test 2','Score 2']]
df2.columns = ['Name','Date','Score']
df2['Test'] = 2
df2
Out[5]:
Name Date Score Test
John Dec 2 2
Jane Dec 3 2
James Dec 2 2
# combine the two frames
df = df1.append(df2)
df.sort_values('N
df = df1.append(df2)
df.sort_values('Name')
Out[6]:
Name Date Score Test
James Sept 2 1
James Dec 2 2
Jane Sept 1 1
Jane Dec 3 2
John Sept 1 1
John Dec 2 2