所以我不得不为高中的计算机项目编写一个程序,我想做了一个sudoko求解器。 'solve'算法的实现如下: -
到目前为止,我有这段代码:
#include <iostream>
#include <fstream>
#include <cstdlib>
using namespace std;
//Prints a message and exits the application.
void error(const char msg[])
{
cout << "An error occurred!" << endl;
cout << "Description: " << msg << endl;
exit(0);
}
//A representation of a sudoku board. Can be read from a file or from memory.
class Sudoku
{
protected:
//For a point x, y and a number n in the board, mAllowed[x][y][n]
//is 1 if n is allowed in that point, 0 if not.
int mAllowed[9][9][10];
int filledIn;
public:
/*
* For mBoard[i][j], the location is (i,j) in the below map:
*
* (0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6) (0,7) (0,8)
* (1,0) (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8)
* (2,0) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7) (2,8)
*
* (3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7) (3,8)
* (4,0) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (4,7) (4,8)
* (5,0) (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (5,7) (5,8)
*
* (6,0) (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) (6,7) (6,8)
* (7,0) (7,1) (7,2) (7,3) (7,4) (7,5) (7,6) (7,7) (7,8)
* (8,0) (8,1) (8,2) (8,3) (8,4) (8,5) (8,6) (8,7) (8,8)
*
*/
int mBoard[9][9];
//Read in from file with given name.
Sudoku(char filename[])
{
filledIn = 0;
int i, j, k;
//Fill the board with 0s.
for (i = 0; i < 9; ++i)
for (j = 0; j < 9; ++j)
mBoard[i][j] = 0;
//Set every number to 'allowed' initially.
for (i = 0; i < 9; ++i)
for (j = 0; j < 9; ++j)
for (k = 1; k <= 9; ++k)
mAllowed[i][j][k] = 1;
//Read in from the file.
ifstream file(filename);
if (!file)
error("File doesn't exist!");
for (i = 0; i < 9; ++i)
for (j = 0; j < 9; ++j)
if (file)
{
int m;
file >> m;
if (m)
set(i, j, m);
}
else
error("Not enough entries in file!");
}
//Solve the board!
int solve()
{
int prevFilledIn;
do
{
prevFilledIn = filledIn;
singleLeft();
checkOnlyAllowed();
} while (filledIn - prevFilledIn > 3);
if (filledIn < 81)
guess();
return filledIn == 81;
}
//Given a point i, j, this looks for places where this point
//disallows a number and sets the 'mAllowed' table accordingly.
void fixAllowed(int i, int j)
{
int n = mBoard[i][j], k;
for (k = 0; k < 9; ++k)
mAllowed[i][k][n] = 0;
for (k = 0; k < 9; ++k)
mAllowed[k][j][n] = 0;
//Look in 3x3 sets too. First, set each coordinate to the
//highest multiple of 3 below itself. This takes us to the
//top-left corner of the 3x3 set this point was in. Then,
//add vectorially all points (x,y) where x and y each are
//one of 0, 1 or 2 to visit each point in this set.
int x = (i / 3) * 3;
int y = (j / 3) * 3;
for (k = 0; k < 3; ++k)
for (int l = 0; l < 3; ++l)
mAllowed[x + k][y + l][n] = 0;
mAllowed[i][j][n] = 1;
}
//Sets a point i, j to n.
void set(int i, int j, int n)
{
mBoard[i][j] = n;
fixAllowed(i, j);
++filledIn;
}
//Try using 'single' on a point, ie, only one number can fit in this
//point, so put it in and return 1. If more than one number can fit,
//return 0.
int trySinglePoint(int i, int j)
{
int c = 0, m;
for (m = 1; m <= 9; ++m)
c += mAllowed[i][j][m];
if (c == 1)
{
for (m = 1; m <= 9; ++m)
if (mAllowed[i][j][m])
set(i, j, m);
//printBoard();
return 1;
}
return 0;
}
//Try to solve by checking for spots that have only one number remaining.
void singleLeft()
{
for (;;)
{
for (int i = 0; i < 9; ++i)
for (int j = 0; j < 9; ++j)
if (!mBoard[i][j])
if (trySinglePoint(i, j))
goto logic_worked;
//If we reached here, board is either full or unsolvable by this logic, so
//our job is done.
return;
logic_worked:
continue;
}
}
//Within rows, columns or sets, whether this number is 'allowed' in spots
//other than i, j.
int onlyInRow(int n, int i, int j)
{
for (int k = 0; k < 9; ++k)
if (k != j && mAllowed[i][k][n])
return 0;
return 1;
}
int onlyInColumn(int n, int i, int j)
{
for (int k = 0; k < 9; ++k)
if (k != i && mAllowed[k][j][n])
return 0;
return 1;
}
int onlyInSet(int n, int i, int j)
{
int x = (i / 3) * 3;
int y = (j / 3) * 3;
for (int k = 0; k < 3; ++k)
for (int l = 0; l < 3; ++l)
if (!(x + k == i && y + l == j) && mAllowed[x + k][y + l][n])
return 0;
return 1;
}
//If a number is 'allowed' in only one spot within a row, column or set, it's
//guaranteed to have to be there.
void checkOnlyAllowed()
{
for (int i = 0; i < 9; ++i)
for (int j = 0; j < 9; ++j)
if (!mBoard[i][j])
for (int m = 1; m <= 9; ++m)
if (mAllowed[i][j][m])
if (onlyInRow(m, i, j) || onlyInColumn(m, i, j) || onlyInSet(m, i, j))
set(i, j, m);
}
//Copy from a given board.
void copyBoard(int board[9][9])
{
filledIn = 0;
for (int i = 0; i < 9; ++i)
for (int j = 0; j < 9; ++j)
{
if (board[i][j] > 0)
++filledIn;
mBoard[i][j] = board[i][j];
}
}
//Try to solve by 'guessing'.
void guess()
{
for (int i = 0; i < 9; ++i)
for (int j = 0; j < 9; ++j)
for (int n = 1; n <= 9; ++n)
if (!mBoard[i][j])
if (mAllowed[i][j][n] == 1)
{
//Do a direct copy so that it gets the 'mAllowed'
//table too.
Sudoku s = *this;
//Try solving with this number at this spot.
s.set(i, j, n);
if (s.solve())
{
//It was able to do it! Copy and report success!
copyBoard(s.mBoard);
return;
}
}
}
//Print the board (for debug purposes)
void printBoard()
{
for (int i = 0; i < 9; ++i)
{
for (int j = 0; j < 9; ++j)
cout << mBoard[i][j] << " ";
cout << endl;
}
cout << endl;
char s[5];
cin >> s;
}
};
int main(int argc, char **argv)
{
//char filename[42];
//cout << "Enter filename: ";
//cin >> filename;
char *filename = argv[1];
Sudoku s(filename);
if (!s.solve())
error("Couldn't solve!");
cout << "Solved! Here's the solution:" << endl << endl;
for (int i = 0; i < 9; ++i)
{
for (int j = 0; j < 9; ++j)
cout << s.mBoard[i][j] << " ";
cout << endl;
}
return 0;
}
(代码包括行号:http://sprunge.us/AiUc?cpp)
现在我明白它不是很好的风格,但是它来自深夜编码会话,我们在学校实验室使用较旧的编译器,所以我不得不做一些不同的事情(在那个编译器中,标准头文件的扩展名为“.h”,for循环中声明的变量位于outside-for范围内,...)。
该文件应包含棋盘格中每个点的空白分隔数字,从左上角开始,从左到右,从上到下,空白点由'0'表示。
对于以下文件,它的效果相当不错:
5 3 0 0 7 0 0 0 0
6 0 0 1 9 5 0 0 0
0 9 8 0 0 0 0 6 0
8 0 0 0 6 0 0 0 3
4 0 0 8 0 3 0 0 1
7 0 0 0 2 0 0 0 6
0 6 0 0 0 0 2 8 0
0 0 0 4 1 9 0 0 5
0 0 0 0 8 0 0 7 9
然而,这个给它带来了麻烦:
0 9 4 0 0 0 1 3 0
0 0 0 0 0 0 0 0 0
0 0 0 0 7 6 0 0 2
0 8 0 0 1 0 0 0 0
0 3 2 0 0 0 0 0 0
0 0 0 2 0 0 0 6 0
0 0 0 0 5 0 4 0 0
0 0 0 0 0 8 0 0 7
0 0 6 3 0 4 0 0 8
如果我注释掉打印语句并跟踪进度,我可以看到它是从点向错误的方向开始的。最终它会卡在最后,而回溯永远不会回到足够远的地方。我认为'checkOnlyAllowed'部分有问题......
您认为这可能是什么问题?
另外 - 我知道我可以在'mAllowed'表中使用一个位域,但我们还没有在学校正式了解按位操作。 :P
答案 0 :(得分:0)
在第170行,你有一个跳出for循环的goto,然后继续。这可能会给你一些奇怪的行为,继续错误的循环,这可能取决于特定的编译器。
尝试用以下代码替换第164-177行:
164 for (;;)
165 {
166 bool successfullyContributedToTheBoard = false;
167 for (int i = 0; i < 9; ++i)
168 for (int j = 0; j < 9; ++j)
169 if (!mBoard[i][j])
170 if (trySinglePoint(i, j))
171 successfullyContributedToTheBoard = true;
172 if (!successfullyContributedToTheBoard)
173 return;
174 }
答案 1 :(得分:0)
我没有查看您的代码,但您的策略与我用于编码Sudoku解算器的策略完全相同。但我不记得它很慢。我马上得到了解决方案。在我的测试中,程序所做的“猜测”的最大数量为3。这是为了数独问题而应该是非常困难的。对于后向跟踪而言,三个并不是一个很大的数字,你可以选择一个只剩下几个可能性的单元格(两个或三个),它将搜索空间限制在仅约20-30个状态(对于硬数独问题)。
我所说的是,可以使用这种策略并快速解决数独问题。您只需要弄清楚如何优化代码。尽量避免多余的工作。尽量记住事情,这样你就不需要一次又一次地重新计算它们。
答案 2 :(得分:0)
好吧,我搞定了!似乎'猜测'中的i,j循环是不必要的 - 即,它应该只对一个空位进行猜测,因为它的'子进程'将处理其余的。修复这个实际上使代码更简单。现在它的效果非常好,实际上非常快!
感谢大家的帮助。 ; - )