我正在努力清理列表域名。
我想删除某些“符合”标准的行。我成功地确定了第一个标准,第二个标准很容易做到。
但是,我不能删除行。我已经尝试了几种解决方案,但我所拥有的最好的是以下内容。
from wordsegment import segment
import pandas as pd
def assignname():
dfr = pd.read_csv('data.net.date.csv')
for domainwtld in dfr.domain:
dprice = dfr.price
domainwotld = domainwtld.replace(".net", "")
seperate = wordsegment.segment(domainwotld)
dlnt = (min(seperate, key=len))
slnt = len(dlnt)
if slnt <= 1:
baddomains = domainwtld
a = dfr.loc[dfr['domain'] < (baddomains)]
print (a)
当我运行此代码时,我收到一个输出,在删除“baddomains”中的第一个项目后,在“dfr”中打印整个项目。它会在循环完成之前执行此操作。
如何根据baddomains过滤“原始”csv文件?
答案 0 :(得分:0)
from wordsegment import segment
import pandas as pd
url = 'http://download1474.mediafire.com/3ndc8vevwtng/sa4ifz8rixe7m8u/data.net.date+%285%29.csv'
dfr = pd.read_csv(url)
dfr['domain'] = dfr.domain.str.replace(".net", "")
dfr['words'] = df.domain.apply(segment)
good_domains = dfr[dfr.words.apply(lambda words: len(min(words, key=len))) > 1]
bad_domains = dfr[~dfr.domain.isin(good_domains.domain)]
>>> bad_domains
domain price words
2 keeng 700 [keen, g]
14 ymall 777 [y, mall]
22 idisc 850 [i, disc]
26 borsen 877 [borse, n]
38 cellacom 895 [cell, a, com]
51 iwealth 999 [i, wealth]
96 iplayer 1500 [i, player]
116 mcommerce 2000 [m, commerce]
118 apico 2052 [a, pico]
134 epharm 2500 [e, pharm]
139 ionica 2579 [ionic, a]
153 kasiino 2999 [kasi, in, o]
155 alpadia 3000 [al, padi, a]
158 similans 3152 [similan, s]
163 ifuture 3499 [i, future]
>>> bad_domains.domain.tolist()
['keeng',
'ymall',
'idisc',
'borsen',
'cellacom',
'iwealth',
'iplayer',
'mcommerce',
'apico',
'epharm',
'ionica',
'kasiino',
'alpadia',
'similans',
'ifuture']