绘制PCA与R中的一维

时间:2016-05-15 10:47:51

标签: r ggplot2 pca

我有一个数据集,其中10维作为特征,1维作为聚类编号(11维一起)。如何使用R?

绘制我的数据(PC1)的PCA与群集号的关联
qplot(x = not_null_df$TSC_8125, y =  pca, data = subset(not_null_df, select = c (not_null_df$AVG_ERTEBAT,not_null_df$AVG_ROSHD,not_null_df$AVG_HOGHOGH,not_null_df$AVG_MM,not_null_df$AVG_MK,not_null_df$AVG_TM,not_null_df$AVG_VEJHE,not_null_df$AVG_ANGIZEH,not_null_df$AVG_TAHOD)), main = "Loadings for PC1", xlab = "cluster number")

实际上我写了这部分代码,我收到了这个错误:

Don't know how to automatically pick scale for object of type princomp. Defaulting to continuous.
Error: Aesthetics must be either length 1 or the same as the data (564): x, y
summary(not_null_df)
     ï..QN           NAMECODE        GENDER      VAZEYATTAAHOL     TAHSILAT          SEN           SABEGHE     
 Min.   :  1.00   Min.   : 1.0   Min.   :1.000   Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :1.000  
 1st Qu.: 28.00   1st Qu.:11.0   1st Qu.:1.000   1st Qu.:1.75   1st Qu.:2.000   1st Qu.:1.000   1st Qu.:1.000  
 Median : 60.00   Median :13.0   Median :1.000   Median :2.00   Median :3.000   Median :1.000   Median :1.000  
 Mean   : 68.63   Mean   :11.7   Mean   :1.152   Mean   :1.75   Mean   :2.578   Mean   :1.394   Mean   :1.121  
 3rd Qu.:103.25   3rd Qu.:14.0   3rd Qu.:1.000   3rd Qu.:2.00   3rd Qu.:3.000   3rd Qu.:2.000   3rd Qu.:1.000  
 Max.   :190.00   Max.   :16.0   Max.   :2.000   Max.   :2.00   Max.   :3.000   Max.   :3.000   Max.   :3.000  
  AVG_ERTEBAT       AVG_ROSHD       AVG_HOGHOGH         AVG_MM           AVG_MK           AVG_TM         AVG_VEJHE     
 Min.   : 0.000   Min.   : 0.000   Min.   : 0.000   Min.   : 0.000   Min.   : 0.000   Min.   : 0.000   Min.   : 0.000  
 1st Qu.: 5.333   1st Qu.: 4.125   1st Qu.: 1.750   1st Qu.: 5.000   1st Qu.: 3.125   1st Qu.: 5.981   1st Qu.: 4.556  
 Median : 7.000   Median : 5.875   Median : 3.500   Median : 7.727   Median : 5.000   Median : 8.000   Median : 6.333  
 Mean   : 6.730   Mean   : 5.787   Mean   : 4.001   Mean   : 6.903   Mean   : 4.890   Mean   : 7.390   Mean   : 6.095  
 3rd Qu.: 8.425   3rd Qu.: 7.656   3rd Qu.: 6.000   3rd Qu.: 9.182   3rd Qu.: 6.688   3rd Qu.: 9.204   3rd Qu.: 7.778  
 Max.   :10.000   Max.   :10.000   Max.   :10.000   Max.   :10.000   Max.   :10.000   Max.   :10.000   Max.   :10.000  
  AVG_ANGIZEH       AVG_TAHOD        AVG_SOALAT        TSC_8125          avg       
 Min.   : 0.000   Min.   : 0.000   Min.   : 0.000   Min.   :1.000   Min.   :0.000  
 1st Qu.: 5.000   1st Qu.: 5.833   1st Qu.: 4.000   1st Qu.:1.000   1st Qu.:4.788  
 Median : 7.000   Median : 7.667   Median : 7.000   Median :2.000   Median :6.301  
 Mean   : 6.549   Mean   : 7.171   Mean   : 6.025   Mean   :2.046   Mean   :6.154  
 3rd Qu.: 8.750   3rd Qu.: 9.000   3rd Qu.: 8.000   3rd Qu.:3.000   3rd Qu.:7.599  
 Max.   :10.000   Max.   :10.000   Max.   :10.000   Max.   :3.000   Max.   :9.978  

我可以通过以下代码获得pca:

pca <- princomp(not_null_df, cor=TRUE, scores=TRUE)

summary(pca)
Importance of components:
                         Comp.1     Comp.2     Comp.3     Comp.4     Comp.5     Comp.6     Comp.7     Comp.8     Comp.9
Standard deviation     2.887437 1.28937443 1.12619079 1.08816449 0.98432226 0.91257779 0.90980017 0.82303807 0.74435256
Proportion of Variance 0.438805 0.08749929 0.06675293 0.06232116 0.05099423 0.04383149 0.04356507 0.03565219 0.02916109
Cumulative Proportion  0.438805 0.52630426 0.59305720 0.65537835 0.70637258 0.75020406 0.79376914 0.82942133 0.85858242
                          Comp.10    Comp.11    Comp.12    Comp.13    Comp.14    Comp.15   Comp.16    Comp.17     Comp.18
Standard deviation     0.70304085 0.67709130 0.62905993 0.59284646 0.50799135 0.48013732 0.4476952 0.39317004 0.378722707
Proportion of Variance 0.02601402 0.02412909 0.02082718 0.01849826 0.01358185 0.01213325 0.0105490 0.00813593 0.007548994
Cumulative Proportion  0.88459644 0.90872553 0.92955271 0.94805097 0.96163282 0.97376607 0.9843151 0.99245101 1.000000000
                            Comp.19
Standard deviation     1.838143e-08
Proportion of Variance 1.778301e-17
Cumulative Proportion  1.000000e+00

我的目标是绘制pca(仅Comp.1)与TSC_8125(即群集号)

1 个答案:

答案 0 :(得分:1)

函数princomp()返回7个元素的列表。这些是sdev,加载,中心,比例,n.obs,分数和通话。您可以在功能帮助页面中找到这些的描述(您可以通过键入?princomp来访问它)。根据你的情节的目的,这里感兴趣的可能是分数。

  

分数:所提供数据的分数   主要成分。

     

加载:可变加载的矩阵(即,列的矩阵)   包含特征向量)。

访问列表元素的最简单方法是通过$运算符。因此,pca $ score或pca $ loadings将分别访问这些。分数和加载都是类矩阵,每列对应一个主要组件(第一个col是第一个主要组件,依此类推。)

因此,要访问第一个主要组件分数,您可以使用

comp.1 <- pca$scores[,1]

根据您可以使用的群号进行绘制

plot (comp.1 ~ not_null_df$TSC_8125)

或使用qplot绘制它,如果您喜欢

qplot(x = not_null_df$TSC_8125, y =  comp.1, main = "Scores for PC1", xlab = "cluster number")