我正在matlab中实现期望最大化算法。算法在214096 x 2数据矩阵上运行,并且在计算概率时,存在(214096 x 2)*(2 x 2)*(2 x 214096)矩阵的乘法,这导致matlab中的内存不足错误。有没有办法解决这个问题?
Matlab代码:
enter image description here D = size(X,2); % dimension
N = size(X,1); % number of samples
K = 4; % number of Gaussian Mixture components ( Also number of clusters )
% Initialization
p = [0.2, 0.3, 0.2, 0.3]; % arbitrary pi, probabilities of clusters, apriori probability of cluster
[idx,mu] = kmeans(X,K); % initial means of the components, theta is mu and variance
% compute the covariance of the components
sigma = zeros(D,D,K);
for k = 1:K
tempmat = X(idx==k,:);
sigma(:,:,k) = cov(tempmat); % Sigma j
sigma_det(k) = det(sigma(:,:,k));
end
% calculate x-mu
for k=1: K
check=length( X(idx == k,1))
for lidx = 1: length( X(idx == k,1))
cidx = find( idx == k) ;
Xmu(cidx(lidx),:) = X(cidx(lidx),:) - mu(k,:); %( x-mu ) calculation on cluster level
end
end
% compute P(Cj|x; theta(t)), and take log to simplified calculation
%Eq 14.14 denominator
denom = 0;
for k=1:K
calc_sigma_1_2 = sigma_det(k)^(-1/2);
calc_x_mu = Xmu(idx == k,:);
calc_sigma_inv = inv(sigma(:,:,k));
calc_x_mu_tran = calc_x_mu.';
factor = calc_sigma_1_2 * exp (-1/2 * calc_x_mu * calc_sigma_inv * calc_x_mu_tran ) * p(k);
denom = denom + factor;
end
for k =1:K
calc_sigma_1_2 = sigma_det(k)^(-1/2);
calc_x_mu = Xmu(idx == k,:);
calc_sigma_inv = inv(sigma(:,:,k));
calc_x_mu_tran = calc_x_mu.';
factor = calc_sigma_1_2 * exp (-1/2 * calc_x_mu_tran * calc_sigma_inv * calc_x_mu ) * p(k);
pdf(k) = factor/denom;
end
%%%% Equation 14.14 ends
答案 0 :(得分:0)
似乎你试图通过简单地用向量代替矩阵来应用基于向量的方程,这不是它的工作原理
section.box
应该是(x-mu)的 mahalanobis 范数,并且您希望每个矩阵X的每一行获得此值,因此
(x - mu).' * Inv(sigma) * (x-mu)
现在你必须做逐点 A乘以(X-mu),而不是点积,最后求和第二轴(列),这样你最终得到(X - mu).' * Inv(sigma) =: A <- this is ok, this results in N x d matrix
元素向量,每个元素向量包含来自X的相应行的马哈拉诺比斯范数。