我正在为特定领域的语言开发自定义解释器。基于Apache Zeppelin文档(https://zeppelin.incubator.apache.org/docs/latest/development/writingzeppelininterpreter.html)中给出的示例,解释器运行良好。现在我想将一些结果存储在一个新的DataFrame中。
我找到了创建DataFrames(http://spark.apache.org/docs/latest/sql-programming-guide.html)的代码,但我无法在我的解释器中使用它,因为我基本上找不到一种方法来访问有效的运行时SparkContext(通常称为" sc")来自我的自定义解释器。
我尝试过(静态)SparkContext.getOrCreate(),但这甚至导致了ClassNotFoundException。然后我将整个zeppelin-spark-dependencies ... jar添加到我的解释器文件夹中,这解决了类加载问题,但现在我得到了一个SparkException("必须设置主网址...")
知道如何从自定义解释器中访问我的Notebook的SparkContext吗?非常感谢!
更新
感谢Kangrok Lee的评论,我的代码现在看起来如下:见下文。它运行并且似乎创建了一个DataFrame(至少它不再抛出任何异常)。但我不能在后续的SQL段中使用创建的DataFrame(第一段使用我的&#34;%opl&#34;解释器,如下所示,应创建&#34;结果&#34; DataFrame):< / p>
%opl
1 2 3
> 1
> 2
> 3
%sql
select * from result
> Table not found: result; line 1 pos 14
因此我处理SparkContext的方式可能还有问题。有任何想法吗?非常感谢!
package opl;
import java.io.ByteArrayOutputStream;
import java.io.PrintStream;
import java.util.ArrayList;
import java.util.List;
import java.util.Properties;
import org.apache.spark.SparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructType;
import org.apache.zeppelin.interpreter.Interpreter;
import org.apache.zeppelin.interpreter.InterpreterContext;
import org.apache.zeppelin.interpreter.InterpreterPropertyBuilder;
import org.apache.zeppelin.interpreter.InterpreterResult;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
public class OplInterpreter2 extends Interpreter {
static {
Interpreter.register("opl","opl",OplInterpreter2.class.getName(),
new InterpreterPropertyBuilder()
.add("spark.master", "local[4]", "spark.master")
.add("spark.app.name", "Opl Interpreter", "spark.app.name")
.add("spark.serializer", "org.apache.spark.serializer.KryoSerializer", "spark.serializer")
.build());
}
private Logger logger = LoggerFactory.getLogger(OplInterpreter2.class);
private void log(Object o) {
if (logger != null)
logger.warn("OplInterpreter2 "+o);
}
public OplInterpreter2(Properties properties) {
super(properties);
log("CONSTRUCTOR");
}
@Override
public void open() {
log("open()");
}
@Override
public void cancel(InterpreterContext arg0) {
log("cancel()");
}
@Override
public void close() {
log("close()");
}
@Override
public List<String> completion(String arg0, int arg1) {
log("completion()");
return new ArrayList<String>();
}
@Override
public FormType getFormType() {
log("getFormType()");
return FormType.SIMPLE;
}
@Override
public int getProgress(InterpreterContext arg0) {
log("getProgress()");
return 100;
}
@Override
public InterpreterResult interpret(String string, InterpreterContext context) {
log("interpret() "+string);
PrintStream oldSys = System.out;
try {
ByteArrayOutputStream baos = new ByteArrayOutputStream();
PrintStream ps = new PrintStream(baos);
System.setOut(ps);
execute(string);
System.out.flush();
System.setOut(oldSys);
return new InterpreterResult(
InterpreterResult.Code.SUCCESS,
InterpreterResult.Type.TEXT,
baos.toString());
} catch (Exception ex) {
System.out.flush();
System.setOut(oldSys);
return new InterpreterResult(
InterpreterResult.Code.ERROR,
InterpreterResult.Type.TEXT,
ex.toString());
}
}
private void execute(String code) throws Exception {
SparkContext sc = SparkContext.getOrCreate();
SQLContext sqlc = SQLContext.getOrCreate(sc);
StructType structType = new StructType().add("value",DataTypes.IntegerType);
ArrayList<Row> list = new ArrayList<Row>();
for (String s : code.trim().split("\\s+")) {
int value = Integer.parseInt(s);
System.out.println(value);
list.add(RowFactory.create(value));
}
DataFrame df = sqlc.createDataFrame(list,structType);
df.registerTempTable("result");
}
}
答案 0 :(得分:0)
我认为您应该配置spark群集,例如以下声明。
spark.master = "local[4]"
spark.app.name = "My Spark App"
spark.serializer = "org.apache.spark.serializer.KryoSerializer"
使用SparkContext.getOrCreate()对我来说很好。
谢谢, Kangrok Lee
答案 1 :(得分:0)
最后我找到了一个解决方案,虽然我不认为这是一个非常好的解决方案。在下面的代码中,我使用的函数getSparkInterpreter()是我在org.apache.zeppelin.spark.PySparkInterpreter.java中找到的。
这要求我将我的打包代码(jar)放入Spark解释器文件夹,而不是它自己的解释器文件夹,我认为这应该是首选方式(根据https://zeppelin.incubator.apache.org/docs/latest/development/writingzeppelininterpreter.html)。此外,我的翻译不会出现在Zeppelin的翻译配置页面中作为自己的翻译。但它可以在Zeppelin段中使用。
并且:在代码中,我可以创建一个DataFrame,这也可以在我的段落之外使用 - 这就是我想要实现的目标。
package opl;
import java.io.ByteArrayOutputStream;
import java.io.PrintStream;
import java.util.ArrayList;
import java.util.List;
import java.util.Properties;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructType;
import org.apache.zeppelin.interpreter.Interpreter;
import org.apache.zeppelin.interpreter.InterpreterContext;
import org.apache.zeppelin.interpreter.InterpreterPropertyBuilder;
import org.apache.zeppelin.interpreter.InterpreterResult;
import org.apache.zeppelin.interpreter.LazyOpenInterpreter;
import org.apache.zeppelin.interpreter.WrappedInterpreter;
import org.apache.zeppelin.spark.SparkInterpreter;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
public class OplInterpreter2 extends Interpreter {
static {
Interpreter.register(
"opl",
"spark",//"opl",
OplInterpreter2.class.getName(),
new InterpreterPropertyBuilder()
.add("sth", "defaultSth", "some thing")
.build());
}
private Logger logger = LoggerFactory.getLogger(OplInterpreter2.class);
private void log(Object o) {
if (logger != null)
logger.warn("OplInterpreter2 "+o);
}
public OplInterpreter2(Properties properties) {
super(properties);
log("CONSTRUCTOR");
}
@Override
public void open() {
log("open()");
}
@Override
public void cancel(InterpreterContext arg0) {
log("cancel()");
}
@Override
public void close() {
log("close()");
}
@Override
public List<String> completion(String arg0, int arg1) {
log("completion()");
return new ArrayList<String>();
}
@Override
public FormType getFormType() {
log("getFormType()");
return FormType.SIMPLE;
}
@Override
public int getProgress(InterpreterContext arg0) {
log("getProgress()");
return 100;
}
@Override
public InterpreterResult interpret(String string, InterpreterContext context) {
log("interpret() "+string);
PrintStream oldSys = System.out;
try {
ByteArrayOutputStream baos = new ByteArrayOutputStream();
PrintStream ps = new PrintStream(baos);
System.setOut(ps);
execute(string);
System.out.flush();
System.setOut(oldSys);
return new InterpreterResult(
InterpreterResult.Code.SUCCESS,
InterpreterResult.Type.TEXT,
baos.toString());
} catch (Exception ex) {
System.out.flush();
System.setOut(oldSys);
return new InterpreterResult(
InterpreterResult.Code.ERROR,
InterpreterResult.Type.TEXT,
ex.toString());
}
}
private void execute(String code) throws Exception {
SparkInterpreter sintp = getSparkInterpreter();
SQLContext sqlc = sintp.getSQLContext();
StructType structType = new StructType().add("value",DataTypes.IntegerType);
ArrayList<Row> list = new ArrayList<Row>();
for (String s : code.trim().split("\\s+")) {
int value = Integer.parseInt(s);
System.out.println(value);
list.add(RowFactory.create(value));
}
DataFrame df = sqlc.createDataFrame(list,structType);
df.registerTempTable("result");
}
private SparkInterpreter getSparkInterpreter() {
LazyOpenInterpreter lazy = null;
SparkInterpreter spark = null;
Interpreter p = getInterpreterInTheSameSessionByClassName(SparkInterpreter.class.getName());
while (p instanceof WrappedInterpreter) {
if (p instanceof LazyOpenInterpreter) {
lazy = (LazyOpenInterpreter) p;
}
p = ((WrappedInterpreter) p).getInnerInterpreter();
}
spark = (SparkInterpreter) p;
if (lazy != null) {
lazy.open();
}
return spark;
}
}