我在SQL Server中使用一个查询,该查询需要一个范围来检查数字是否在该范围内(例如,在下面检查DemographicGroupDimID
是否为(1,2或3)。在做了一些谷歌搜索后,我发现能够做到这一点的唯一方法是:
DECLARE @adults table (Id int)
INSERT INTO @adults VALUES (1), (2), (3)
SELECT [date], [station], [impression] = SUM([impressions]) / COUNT(DISTINCT [datetime] )
FROM
(SELECT [datetime] = DATEADD(minute,td.Minute,DATEADD(hour,td.NielsenLocalHour,CONVERT(smalldatetime, ddt.DateKey))), [date] = ddt.DateKey, [station] = nd.Name, [impressions] = SUM(naf.Impression)
FROM [Nielsen].[dbo].[NielsenAnalyticsFact] as naf
LEFT JOIN [dbo].[DateDim] AS ddt
ON naf.StartDateDimID = ddt.DateDimID
LEFT JOIN [dbo].NetworkDim as nd
ON naf.NetworkDimID = nd.NetworkDimID
LEFT JOIN [dbo].TimeDim as td
ON naf.QuarterHourDimID = td.TimeDimID
WHERE (naf.NielsenMarketDimID = 1
AND naf.RecordTypeDimID = 2
AND naf.AudienceEstimateTypeDimID = 1
AND naf.DailyOrWeeklyDimID = 1
AND naf.RecordSequenceCodeDimID = 5
AND naf.ViewingTypeDimID = 4
AND naf.QuarterHourDimID IS NOT NULL
AND naf.DemographicGroupDimID < 31
AND nd.Affiliation = 'Cable'
AND naf.NetworkDimID != 1278
AND naf.DemographicGroupDimID in (SELECT Id FROM @adults))
GROUP BY DATEADD(minute,td.Minute,DATEADD(hour,td.NielsenLocalHour,CONVERT(smalldatetime, ddt.DateKey))), nd.Name, ddt.DateKey)
AS grouped_table
GROUP BY [date], [station]
ORDER BY [date], [station]
如果我需要使用不同的范围动态执行此操作,则会失败,如下所示:
from queries import DB_CREDENTIALS
import pyodbc
import pandas as pd
sql_ = """DECLARE @adults table (Id int)
INSERT INTO @adults VALUES ?
SELECT [date], [station], [impression] = SUM([impressions]) / COUNT(DISTINCT [datetime] )
FROM
(SELECT [datetime] = DATEADD(minute,td.Minute,DATEADD(hour,td.NielsenLocalHour,CONVERT(smalldatetime, ddt.DateKey))), [date] = ddt.DateKey, [station] = nd.Name, [impressions] = SUM(naf.Impression)
FROM [Nielsen].[dbo].[NielsenAnalyticsFact] as naf
LEFT JOIN [dbo].[DateDim] AS ddt
ON naf.StartDateDimID = ddt.DateDimID
LEFT JOIN [dbo].NetworkDim as nd
ON naf.NetworkDimID = nd.NetworkDimID
LEFT JOIN [dbo].TimeDim as td
ON naf.QuarterHourDimID = td.TimeDimID
WHERE (naf.NielsenMarketDimID = 1
AND naf.RecordTypeDimID = 2
AND naf.AudienceEstimateTypeDimID = 1
AND naf.DailyOrWeeklyDimID = 1
AND naf.RecordSequenceCodeDimID = 5
AND naf.ViewingTypeDimID = 4
AND naf.QuarterHourDimID IS NOT NULL
AND naf.DemographicGroupDimID < 31
AND nd.Affiliation = 'Cable'
AND naf.NetworkDimID != 1278
AND naf.DemographicGroupDimID in (SELECT Id FROM @adults))
GROUP BY DATEADD(minute,td.Minute,DATEADD(hour,td.NielsenLocalHour,CONVERT(smalldatetime, ddt.DateKey))), nd.Name, ddt.DateKey)
AS grouped_table
GROUP BY [date], [station]
ORDER BY [date], [station]"""
with pyodbc.connect(DB_CREDENTIALS) as cnxn:
df = pd.read_sql(sql=sql_, con=cnxn, params=['(30)'])
---------------------------------------------------------------------------
DatabaseError Traceback (most recent call last)
<ipython-input-5-4b63847d007f> in <module>()
1 with pyodbc.connect(DB_CREDENTIALS) as cnxn:
----> 2 df = pd.read_sql(sql=sql_, con=cnxn, params=['(30)'])
C:\Users\mburke\AppData\Local\Continuum\Anaconda64\lib\site-packages\pandas\io\sql.pyc in read_sql(sql, con, index_col, coerce_float, params, parse_dates, columns, chunksize)
497 sql, index_col=index_col, params=params,
498 coerce_float=coerce_float, parse_dates=parse_dates,
--> 499 chunksize=chunksize)
500
501 try:
C:\Users\mburke\AppData\Local\Continuum\Anaconda64\lib\site-packages\pandas\io\sql.pyc in read_query(self, sql, index_col, coerce_float, params, parse_dates, chunksize)
1593
1594 args = _convert_params(sql, params)
-> 1595 cursor = self.execute(*args)
1596 columns = [col_desc[0] for col_desc in cursor.description]
1597
C:\Users\mburke\AppData\Local\Continuum\Anaconda64\lib\site-packages\pandas\io\sql.pyc in execute(self, *args, **kwargs)
1570 ex = DatabaseError(
1571 "Execution failed on sql '%s': %s" % (args[0], exc))
-> 1572 raise_with_traceback(ex)
1573
1574 @staticmethod
C:\Users\mburke\AppData\Local\Continuum\Anaconda64\lib\site-packages\pandas\io\sql.pyc in execute(self, *args, **kwargs)
1558 cur.execute(*args, **kwargs)
1559 else:
-> 1560 cur.execute(*args)
1561 return cur
1562 except Exception as exc:
DatabaseError: Execution failed on sql 'DECLARE @adults table (Id int)
INSERT INTO @adults VALUES ?
SELECT [date], [station], [impression] = SUM([impressions]) / COUNT(DISTINCT [datetime] )
FROM
(SELECT [datetime] = DATEADD(minute,td.Minute,DATEADD(hour,td.NielsenLocalHour,CONVERT(smalldatetime, ddt.DateKey))), [date] = ddt.DateKey, [station] = nd.Name, [impressions] = SUM(naf.Impression)
FROM [Nielsen].[dbo].[NielsenAnalyticsFact] as naf
LEFT JOIN [dbo].[DateDim] AS ddt
ON naf.StartDateDimID = ddt.DateDimID
LEFT JOIN [dbo].NetworkDim as nd
ON naf.NetworkDimID = nd.NetworkDimID
LEFT JOIN [dbo].TimeDim as td
ON naf.QuarterHourDimID = td.TimeDimID
WHERE (naf.NielsenMarketDimID = 1
AND naf.RecordTypeDimID = 2
AND naf.AudienceEstimateTypeDimID = 1
AND naf.DailyOrWeeklyDimID = 1
AND naf.RecordSequenceCodeDimID = 5
AND naf.ViewingTypeDimID = 4
AND naf.QuarterHourDimID IS NOT NULL
AND naf.DemographicGroupDimID < 31
AND nd.Affiliation = 'Cable'
AND naf.NetworkDimID != 1278
AND naf.DemographicGroupDimID in (SELECT Id FROM @adults))
GROUP BY DATEADD(minute,td.Minute,DATEADD(hour,td.NielsenLocalHour,CONVERT(smalldatetime, ddt.DateKey))), nd.Name, ddt.DateKey)
AS grouped_table
GROUP BY [date], [station]
ORDER BY [date], [station]': ('42000', "[42000] [Microsoft][ODBC SQL Server Driver][SQL Server]Incorrect syntax near '@P1'. (102) (SQLExecDirectW); [42000] [Microsoft][ODBC SQL Server Driver][SQL Server]Statement(s) could not be prepared. (8180)")
这是因为declare语句需要在select语句本身的范围内吗?我不确定pandas
如何处理pyodbc
光标对象,因此我不确定此错误源自何处。
编辑:请注意,我在这个实例中传递的参数是(30)
只是为了使用当范围中只有一个数字失败时的简单情况。对于像(1), (2), (3)
这样的更复杂的字符串,它当然也失败了,就像上面的例子一样。
答案 0 :(得分:6)
如果在SQL中使用prepared statements,则无法为一个占位符/参数/绑定变量放置多个值!
除此之外,您只能使用占位符/参数/绑定变量来代替literals,您不能将它用于不文字的SQL语句的一部分。
在您的情况下,您尝试将(
和)
作为SQL的一部分,但不将文字作为参数。
使用参数/预备语句/绑定变量也可以保护您免受某些SQL注入。
说,尝试按如下方式更改代码:
变化
INSERT INTO @adults VALUES ?
到
INSERT INTO @adults VALUES (?)
和
df = pd.read_sql(sql=sql_, con=cnxn, params=['(30)'])
到
df = pd.read_sql(sql=sql_, con=cnxn, params=['30'])
<强>更新强>
您可以这样准备SQL:
In [9]: vals = [20,30,40]
In [32]: vals
Out[32]: [20, 30, 40]
In [33]: ' (?)' * len(vals)
Out[33]: ' (?) (?) (?)'
然后:
In [14]: sql_ = """DECLARE @adults table (Id int)
....: INSERT INTO @adults VALUES {}
....:
....: SELECT [date],
....: """
In [15]: sql_.format(' (?)' * len(vals))
Out[15]: 'DECLARE @adults table (Id int)\nINSERT INTO @adults VALUES (?) (?) (?)\n\nSELECT [date],\n'
注意生成的(?) (?) (?)
最后调用你的SQL:
df = pd.read_sql(sql=sql_.format(' (?)' * len(vals)), con=cnxn, params=vals)