我目前正在开展一项研究项目,该项目对图像类别进行分类。研究的第一部分是使用随机森林算法的图像分割。使用此算法分割图像时遇到了很大的困难。有人可以帮我解决如何使用随机森林算法 Python 分割图像吗?
我用K-means聚类尝试过它。但我需要随机森林这样做。
import time
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_extraction import image
from sklearn.cluster import spectral_clustering
from sklearn.utils.testing import SkipTest
from sklearn.utils.fixes import sp_version
if sp_version < (0, 12):
raise SkipTest("Skipping because SciPy version earlier than 0.12.0 and "
"thus does not include the scipy.misc.face() image.")
# load the raccoon face as a numpy array
try:
face = sp.face(gray=True)
except AttributeError:
# Newer versions of scipy have face in misc
from scipy import misc
face = misc.face(gray=True)
# Resize it to 10% of the original size to speed up the processing
face = sp.misc.imresize(face, 0.10) / 255.
rm = RandomForestClassifier
# Convert the image into a graph with the value of the gradient on the
# edges.
graph = image.img_to_graph(face)
# Take a decreasing function of the gradient: an exponential
# The smaller beta is, the more independent the segmentation is of the
# actual image. For beta=1, the segmentation is close to a voronoi
beta = 5
eps = 1e-6
graph.data = np.exp(-beta * graph.data / graph.data.std()) + eps
# Apply spectral clustering (this step goes much faster if you have pyamg
# installed)
N_REGIONS = 25
#############################################################################
# Visualize the resulting regions
for assign_labels in ('kmeans', 'discretize'):
t0 = time.time()
labels = spectral_clustering(graph, n_clusters=N_REGIONS,
assign_labels=assign_labels, random_state=1)
t1 = time.time()
labels = labels.reshape(face.shape)
plt.figure(figsize=(5, 5))
plt.imshow(face, cmap=plt.cm.gray)
for l in range(N_REGIONS):
plt.contour(labels == l, contours=1,
colors=[plt.cm.spectral(l / float(N_REGIONS))])
plt.xticks(())
plt.yticks(())
title = 'Spectral clustering: %s, %.2fs' % (assign_labels, (t1 - t0))
print(title)
plt.title(title)
plt.show()
答案 0 :(得分:0)
这是python中的随机森林实现。
如果需要使用它进行图像分割,建议您使用ITKsnap,监督学习,分割程序包,该程序包使用随机森林并在python中实现。 这很容易,您可以插入或定义标签并训练数据。您可以玩耍学习参数,例如树木的数量或深度。 这是分割如何在大脑数据上起作用的示例:
教程:https://www.youtube.com/watch?v=WGfrVWWiMZM&t=1s
import numpy as np
import csv as csv
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.cross_validation import StratifiedKFold # Add important libs
# Training:
train=[]
test=[] #Array Definition
path1 = r'D:\random forest\data set\train.csv' #Address Definition
path2 = r'D:\random forest\data set\test.csv'
with open(path1, 'r') as f1: #Open File as read by 'r'
reader = csv.reader(f1)
next(reader, None) #Skip header because file header is not needed
for row in reader: #fill array by file info by for loop
train.append(row)
train = np.array(train)
with open(path2, 'r') as f2:
reader2 = csv.reader(f2)
next(reader2, None)
for row2 in reader2:
test.append(row2)
test = np.array(test)
train = np.delete(train,[0],1)
test = np.delete(test,[0],1)
# Optimization
parameter_gridsearch = {
'max_depth' : [3, 4], #depth of each decision tree
'n_estimators': [50, 20], #count of decision tree
'max_features': ['sqrt', 'auto', 'log2'],
'min_samples_split': [2],
'min_samples_leaf': [1, 3, 4],
'bootstrap': [True, False],
}
# RF classification
randomForestClassifier()
crossvalidation = StratifiedKFold(train[0::,0] , n_folds=5)
gridsearch = GridSearchCV(randomforest, #grid search for algorithm optimization
scoring='accuracy',
param_grid=parameter_gridsearch,
cv=crossvalidation)
gridsearch.fit(train[0::,1::], train[0::,0]) #train[0::,0] is as target
model = gridsearch
parameters = gridsearch.best_params_