pandas:将多个列转换为字符串

时间:2016-05-04 18:21:16

标签: string python-2.7 pandas

我有一些列['a', 'b', 'c', etc.]acfloat64bobject

我想将所有列转换为字符串并保留nan s。

使用df[['a', 'b', 'c']] == df[['a', 'b', 'c']].astype(str)进行了尝试,但是float64列留下了空白。

目前,我将逐一介绍以下内容:

df['a'] = df['a'].apply(str)
df['a'] = df['a'].replace('nan', np.nan)

是使用.astype(str)然后将''替换为np.nan的最佳方法吗? 附带问题:.astype(str).apply(str)之间有区别吗?

示例输入:(dtypes:a = float64,b = object,c = float64)

a, b, c, etc.
23, 'a42', 142, etc.
51, '3', 12, etc.
NaN, NaN, NaN, etc.
24, 'a1', NaN, etc.

所需的输出:(dtypes:a =对象,b =对象,c =对象)

a, b, c, etc.
'23', 'a42', '142', etc.
'51', 'a3', '12', etc.
NaN, NaN, NaN, etc.
'24', 'a1', NaN, etc.

4 个答案:

答案 0 :(得分:3)

df = pd.DataFrame({
    'a': [23.0, 51.0, np.nan, 24.0],
    'b': ["a42", "3", np.nan, "a1"],
    'c': [142.0, 12.0, np.nan, np.nan]})

for col in df:
    df[col] = [np.nan if (not isinstance(val, str) and np.isnan(val)) else 
               (val if isinstance(val, str) else str(int(val))) 
               for val in df[col].tolist()]

>>> df
     a    b    c
0   23  a42  142
1   51    3   12
2  NaN  NaN  NaN
3   24   a1  NaN

>>> df.values
array([['23', 'a42', '142'],
       ['51', '3', '12'],
       [nan, nan, nan],
       ['24', 'a1', nan]], dtype=object)

答案 1 :(得分:2)

您可以对数据框的每个元素应用.astype()函数,也可以通过以下方式选择感兴趣的列以转换为字符串。

In [41]: df1 = pd.DataFrame({
    ...:     'a': [23.0, 51.0, np.nan, 24.0],
    ...:     'b': ["a42", "3", np.nan, "a1"],
    ...:     'c': [142.0, 12.0, np.nan, np.nan]})
    ...: 

In [42]: 

In [42]: df1
Out[42]: 
      a    b      c
0  23.0  a42  142.0
1  51.0    3   12.0
2   NaN  NaN    NaN
3  24.0   a1    NaN

### Shows current data type of the columns:
In [43]: df1.dtypes
Out[43]: 
a    float64
b     object
c    float64
dtype: object

### Applying .astype() on each element of the dataframe converts the datatype to string
In [45]: df1.astype(str).dtypes
Out[45]: 
a    object
b    object
c    object
dtype: object

### Or, you could select the column of interest to convert it to strings
In [48]: df1[["a", "b", "c"]] = df1[["a","b", "c"]].astype(str)

In [49]: df1.dtypes ### Datatype update
Out[49]: 
a    object
b    object
c    object
dtype: object

答案 2 :(得分:0)

我这样做了。

从特定列中获取所有值,例如'文本'

k = df['text'].values

然后,将每个值运行到一个新的声明字符串,例如' thestring'

thestring = ""
for i in range(0,len(k)):
    thestring += k[i]
print(thestring)

因此,列熊猫中的所有字符串' text'已被放入一个字符串变量。

欢呼声, 试车

答案 3 :(得分:0)

这将为您提供列名列表

lst = list(df)

这会将所有列转换为字符串类型

df[lst] = df[lst].astype(str)