我是Spark
的新手,我目前的版本是1.3.1。我想用PySpark
实现逻辑回归,所以,我从Spark Python MLlib
from pyspark.mllib.classification import LogisticRegressionWithLBFGS
from pyspark.mllib.regression import LabeledPoint
from numpy import array
# Load and parse the data
def parsePoint(line):
values = [float(x) for x in line.split(' ')]
return LabeledPoint(values[0], values[1:])
data = sc.textFile("data/mllib/sample_svm_data.txt")
parsedData = data.map(parsePoint)
# Build the model
model = LogisticRegressionWithLBFGS.train(parsedData)
# Evaluating the model on training data
labelsAndPreds = parsedData.map(lambda p: (p.label, model.predict(p.features)))
trainErr = labelsAndPreds.filter(lambda (v, p): v != p).count() / float(parsedData.count())
print("Training Error = " + str(trainErr))
我发现model
的属性是:
In [21]: model.<TAB>
model.clearThreshold model.predict model.weights
model.intercept model.setThreshold
如何获得逻辑回归系数?
答案 0 :(得分:4)
您注意到获取系数的方法是使用LogisticRegressionModel的属性。
参数:
权重 - 为每个要素计算的权重。
拦截 - 为此模型计算的拦截。 (仅用于二元Logistic回归。在多项Logistic回归中, 截距不会是单个值,因此拦截将成为一部分 权重。)
numFeatures - 功能的维度。
numClasses - 多项Logistic回归中k类分类问题的可能结果数。默认情况下, 它是二元逻辑回归,因此numClasses将设置为2。
不要忘记hθ(x) = 1 / exp ^ -(θ0 + θ1 * x1 + ... + θn * xn)
其中θ0
代表intercept
,[θ1,...,θn]
代表weights
,功能数量为n
正如您所看到的,这是预测的方式,您可以查看LogisticRegressionModel的来源。
def predict(self, x):
"""
Predict values for a single data point or an RDD of points
using the model trained.
"""
if isinstance(x, RDD):
return x.map(lambda v: self.predict(v))
x = _convert_to_vector(x)
if self.numClasses == 2:
margin = self.weights.dot(x) + self._intercept
if margin > 0:
prob = 1 / (1 + exp(-margin))
else:
exp_margin = exp(margin)
prob = exp_margin / (1 + exp_margin)
if self._threshold is None:
return prob
else:
return 1 if prob > self._threshold else 0
else:
best_class = 0
max_margin = 0.0
if x.size + 1 == self._dataWithBiasSize:
for i in range(0, self._numClasses - 1):
margin = x.dot(self._weightsMatrix[i][0:x.size]) + \
self._weightsMatrix[i][x.size]
if margin > max_margin:
max_margin = margin
best_class = i + 1
else:
for i in range(0, self._numClasses - 1):
margin = x.dot(self._weightsMatrix[i])
if margin > max_margin:
max_margin = margin
best_class = i + 1
return best_class
答案 1 :(得分:0)