我想打印出我的nn的每个训练步骤的学习率。
我知道亚当有一个自适应学习率,但我有没有办法看到这个(对于张量板中的可视化)
答案 0 :(得分:12)
所有优化器都有一个私有变量,它保存学习速率的值。
在adagrad和gradient descent中,它被称为public class MathsFragment extends Fragment {
BarChart bar;
public static MathsFragment newInstance() {
MathsFragment fragment = new MathsFragment();
return fragment;
}
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
}
public MathsFragment() {
// Required empty public constructor
}
@Override
public View onCreateView(LayoutInflater inflater, ViewGroup container,
Bundle savedInstanceState) {
// Inflate the layout for this fragment
View view =inflater.inflate(R.layout.fragment_maths, container, false);
Typeface font = Typeface.createFromAsset(getActivity().getAssets(), "fonts/ProductSans.ttf");
bar = (BarChart)view.findViewById(R.id.bar);
List<BarEntry> entries = new ArrayList<>();
entries.add(new BarEntry(0f, 100f,"Total"));
entries.add(new BarEntry(1f, 82f,"Obtained"));
entries.add(new BarEntry(2f, 95f,"Highest"));
entries.add(new BarEntry(3f, 69f,"Average"));
BarDataSet bSet = new BarDataSet(entries, "Marks");
bSet.setColors(ColorTemplate.VORDIPLOM_COLORS);
ArrayList<String> barFactors = new ArrayList<>();
barFactors.add("Total");
barFactors.add("Obtained");
barFactors.add("Highest");
barFactors.add("Average");
XAxis xAxis = bar.getXAxis();
xAxis.setGranularity(1f);
xAxis.setGranularityEnabled(true);
BarData data = new BarData(bSet);
data.setBarWidth(0.9f); // set custom bar width
data.setValueTextSize(12);
Description description = new Description();
description.setTextColor(R.color.colorPrimary);
description.setText("All values in marks");
bar.setDescription(description);
bar.setData(data);
bar.setFitBars(true); // make the x-axis fit exactly all bars
bar.invalidate(); // refresh
bar.getXAxis().setValueFormatter(new IndexAxisValueFormatter(barFactors));
Legend l = bar.getLegend();
l.setFormSize(10f); // set the size of the legend forms/shapes
l.setForm(Legend.LegendForm.CIRCLE); // set what type of form/shape should be used
l.setTypeface(font);
l.setTextSize(12f);
l.setTextColor(Color.BLACK);
List<LegendEntry> lentries = new ArrayList<>();
for (int i = 0; i < barFactors.size(); i++) {
LegendEntry entry = new LegendEntry();
entry.formColor = ColorTemplate.VORDIPLOM_COLORS[i];
entry.label = barFactors.get(i);
lentries.add(entry);
}
l.setXEntrySpace(5f); // set the space between the legend entries on the x-axis
l.setYEntrySpace(5f);
l.setCustom(lentries);
return inflater.inflate(R.layout.fragment_maths, container, false);
}
}
。在adam中self._learning_rate
。
因此,您只需要打印self._lr
即可获得此值。需要Sess.run,因为它们是张量。
答案 1 :(得分:9)
Sung Kim的建议对我有用,我的确切步骤是:
lr = 0.1
step_rate = 1000
decay = 0.95
global_step = tf.Variable(0, trainable=False)
increment_global_step = tf.assign(global_step, global_step + 1)
learning_rate = tf.train.exponential_decay(lr, global_step, step_rate, decay, staircase=True)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, epsilon=0.01)
trainer = optimizer.minimize(loss_function)
# Some code here
print('Learning rate: %f' % (sess.run(trainer ._lr)))
答案 2 :(得分:2)
我认为你能做的最简单的事情就是优化器的子类化。
它有几种方法,我想根据变量类型调度。常规密集变量似乎经过_apply_dense
。此解决方案不适用于稀疏或其他事物。
如果查看implementation,您可以看到它将m
和t
个EMA存储在这些“广告位”中。所以这样的事情似乎就这样做了:
class MyAdam(tf.train.AdamOptimizer):
def _apply_dense(self, grad, var):
m = self.get_slot(var, "m")
v = self.get_slot(var, "v")
m_hat = m/(1-self._beta1_power)
v_hat = v/(1-self._beta2_power)
step = m_hat/(v_hat**0.5 + self._epsilon_t)
# Use a histogram summary to monitor it during training.
tf.summary.histogram("hist", step)
return super(MyAdam,self)._apply_dense(grad, var)
step
这里将在区间[-1,1]中,这是学习率乘以的,以确定应用于参数的实际步骤。
图表中通常没有节点,因为有一个大的training_ops.apply_adam
可以完成所有工作。
这里我只是从它创建一个直方图摘要。但是你可以将它粘贴在附在对象上的字典中,然后再读它或者随意做任何事情。
将其放入mnist_deep.py
,并在训练循环中添加一些摘要:
all_summaries = tf.summary.merge_all()
file_writer = tf.summary.FileWriter("/tmp/Adam")
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(20000):
batch = mnist.train.next_batch(50)
if i % 100 == 0:
train_accuracy,summaries = sess.run(
[accuracy,all_summaries],
feed_dict={x: batch[0], y_: batch[1],
keep_prob: 1.0})
file_writer.add_summary(summaries, i)
print('step %d, training accuracy %g' % (i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
在TensorBoard中生成下图:
答案 3 :(得分:2)
在Tensorflow 2
中:
optimizer = tf.keras.optimizers.Adagrad(learning_rate=0.1) # or any other optimizer
print(optimizer.learning_rate.numpy()) # or print(optimizer.lr.numpy())
注意:这为您提供了基础学习率。有关自适应学习率的更多详细信息,请参阅此answer。
答案 4 :(得分:1)
在TensorFlow源中,Adam优化器的当前lr计算如下:
lr = (lr_t * math_ops.sqrt(1 - beta2_power) / (1 - beta1_power))
所以,试试吧:
current_lr = (optimizer._lr_t * tf.sqrt(1 -
optimizer._beta2_power) / (1 - optimizer._beta1_power))
eval_current_lr = sess.run(current_lr)