如何在PLT Redex中实现等递归类型?

时间:2016-05-02 02:47:09

标签: functional-programming scheme racket semantics plt-redex

我相信我非常了解等递归和等递归类型。因此,我一直在尝试使用PLT Redex中的等递归类型为ISWIM实现类型检查器。然而,对于我的生活,我无法弄清楚如何使类型等价工作。其他一切都很棒。

这是我的语言:

(define-language iswim
  [X  ::= variable-not-otherwise-mentioned]
  [b  ::= number true false unit]
  [O  ::= + - * =]
  [M  ::= b X (λ (X : T) M) (M M) (if M M M) (O M M)
      (pair M M) (fst M) (snd M) (inL M T) (inR M T)
      (match M (λ (X : T) M) (λ (X : T) M))]
  [V  ::= b (λ (X : T) M) (pair V V) (inL V T) (inR V T)]
  [T  ::= X Unit Bool Num (T -> T) (T + T) (T × T) (μ (X) T)]
  [Γ  ::= () (X T Γ)]
  #:binding-forms
  (λ (X : T) M #:refers-to X)
  (μ (X) T #:refers-to X))

类型检查器是一种判断形式(我认为“App”案例是错误的):

(define-judgment-form iswim
  #:mode (types I I O)
  #:contract (types Γ M T)

  [-------------------- "Number"
   (types Γ number Num)]

  [-------------------- "True"
   (types Γ true Bool)]

  [-------------------- "False"
   (types Γ false Bool)]

  [-------------------- "Unit"
   (types Γ unit Unit)]

  [(where T (lookup Γ X))
   -------------------- "Var"
   (types Γ X T)]

  [(types (X T_1 Γ) M T_2)
   -------------------- "Abs"
   (types Γ (λ (X : T_1) M) (T_1 -> T_2))]

  [(types Γ M_1 T_1)
   (types Γ M_2 T_2)
   (equiv-types T_1 (T_2 -> T_3))
   -------------------- "App"
   (types Γ (M_1 M_2) T_3)]

  [(types Γ M_1 Bool)
   (types Γ M_2 T)
   (types Γ M_3 T)
   -------------------- "If"
   (types Γ (if M_1 M_2 M_3) T)]

  [(types Γ M_1 Num)
   (types Γ M_2 Num)
   (where T (return-type O))
   -------------------- "Op"
   (types Γ (O M_1 M_2) T)]

  [(types Γ M_1 T_1)
   (types Γ M_2 T_2)
   -------------------- "Pair"
   (types Γ (pair M_1 M_2) (T_1 × T_2))]

  [(types Γ M (T_1 × T_2))
   -------------------- "First"
   (types Γ (fst M) T_1)]

  [(types Γ M (T_1 × T_2))
   -------------------- "Second"
   (types Γ (snd M) T_2)]

  [(types Γ M T_1)
   -------------------- "Left"
   (types Γ (inL M T_2) (T_1 + T_2))]

  [(types Γ M T_2)
   -------------------- "Right"
   (types Γ (inR M T_1) (T_1 + T_2))]

  [(types Γ M_3 (T_1 + T_2))
   (types (X_1 T_1 Γ) M_1 T_3)
   (types (X_2 T_2 Γ) M_2 T_3)
   -------------------- "Match"
   (types Γ (match M_3
              (λ (X_1 : T_1) M_1)
              (λ (X_2 : T_2) M_2))
              T_3)])

类型等价是另一种判断形式(我把所有责任归咎于此代码):

(define-judgment-form iswim
  #:mode (equiv-types I I)
  #:contract (equiv-types T T)

  [-------------------- "Refl"
   (equiv-types T T)]

  [(equiv-types T_1 T_3)
   (equiv-types T_2 T_4)
   -------------------- "Fun"
   (equiv-types (T_1 -> T_2) (T_3 -> T_4))]

  [(equiv-types T_1 T_3)
   (equiv-types T_2 T_4)
   -------------------- "Sum"
   (equiv-types (T_1 + T_2) (T_3 + T_4))]

  [(equiv-types T_1 T_3)
   (equiv-types T_2 T_4)
   -------------------- "Prod"
   (equiv-types (T_1 × T_2) (T_3 × T_4))]

  [(where X_3 ,(variable-not-in (term (T_1 T_2)) (term X_2)))
   (equiv-types (substitute T_1 X_1 X_3) (substitute T_2 X_2 X_3))
   -------------------- "Mu"
   (equiv-types (μ (X_1) T_1) (μ (X_2) T_2))]

  [(equiv-types (substitute T_1 X (μ (X) T_1)) T_2)
   -------------------- "Mu Left"
   (equiv-types (μ (X) T_1) T_2)]

  [(equiv-types T_1 (substitute T_2 X (μ (X) T_2)))
   -------------------- "Mu Right"
   (equiv-types T_1 (μ (X) T_2))])

以下是我的元功能:

(define-metafunction iswim
  lookup  : Γ X -> T or #f
  [(lookup () X)        #f]
  [(lookup (X T Γ) X)   T]
  [(lookup (X T Γ) X_1) (lookup Γ X_1)])

(define-metafunction iswim
  return-type : O -> T
  [(return-type +) Num]
  [(return-type -) Num]
  [(return-type *) Num]
  [(return-type =) Bool])

任何帮助将不胜感激。

1 个答案:

答案 0 :(得分:3)

我从来没有使用过PLT Redex而且手头没有它,但是让我回答,因为你写了“[a] ny help将会受到赞赏。”:-) [编辑补充:我安装了PLT Redex和实现了等递归类型。见下文。]

作为等递归类型的一般挑战,您的算法不适用于像

这样的一对类型

T1 =(μ(X)(Bool→X))

T2 =(μ(X)(Bool - >(Bool - > X)))

由于以下原因。假设我们根据您的算法比较T1和T2,如下所示:

WHERE "Fecha recepcion" > to_date('01/01/2016', 'DD/MM/YYYY')
  AND "Fecha recepcion" < to_date('06/06/2016', 'DD/MM/YYYY')

根据定义:

    T1  =?=  T2

通过查看算法中μ的实体:

    (μ (X) (Bool -> X))  =?=  (μ (X) (Bool -> (Bool -> X)))

通过比较返回类型:

    (Bool -> X3)  =?=  (Bool -> (Bool -> X3))

因此无法将T1和T2等同起来!

正确的算法应该“memoioze”已访问过的类型对,如下所示:

    X3  =?=  (Bool -> X3)

根据定义:

    T1  =?=  T2

通过扩展μ的 记住我们已经访问过T1和T2

    (μ (X) (Bool -> X))  =?=  (μ (X) (Bool -> (Bool -> X)))

通过比较返回类型:

    (Bool -> T1)  =?=  (Bool -> (Bool -> T2))  ***assuming T1 = T2***

根据T1的定义:

    T1  =?=  (Bool -> T2)  ***assuming T1 = T2***

通过扩展l.h.s。上的μ:

    (μ (X) (Bool -> X))  =?=  (Bool -> T2)  ***assuming T1 = T2***

通过比较返回类型:

    (Bool -> T1)  =?=  (Bool -> T2)  ***assuming T1 = T2***

呀!

有关理论详情,请参阅例如Gapeyev等人提出的“递归子类型”。 (它考虑了子类型,但类型相等是相似的)。

P.S。我在PLT Redex中的实现如下。将其保存在文件中,在DrRacket中打开,然后运行。

    T1  =?=  T2  ***assuming T1 = T2***