平滑的阴影区域

时间:2016-04-28 07:18:54

标签: r ggplot2

我正在尝试使用错误区域(而不是错误条)创建折线图。这是我的数据:

data <- read.table(text = "
   Water_mass Time Abundance       Mean          sd      Upper      Lower
1       FRONT    1       265  281.75000   54.524459  336.27446  227.22554
2       FRONT    1       359  281.75000   54.524459  336.27446  227.22554
3       FRONT    1       272  281.75000   54.524459  336.27446  227.22554
4       FRONT    1       231  281.75000   54.524459  336.27446  227.22554
5       FRONT  188        40   57.80000   19.227584   77.02758   38.57242
6       FRONT  188        57   57.80000   19.227584   77.02758   38.57242
7       FRONT  188        38   57.80000   19.227584   77.02758   38.57242
8       FRONT  188        73   57.80000   19.227584   77.02758   38.57242
9       FRONT  188        81   57.80000   19.227584   77.02758   38.57242
10      FRONT  353       131  346.25000  253.898109  600.14811   92.35189
11      FRONT  353       622  346.25000  253.898109  600.14811   92.35189
12      FRONT  353       502  346.25000  253.898109  600.14811   92.35189
13      FRONT  353       130  346.25000  253.898109  600.14811   92.35189
14      FRONT  434        38   47.50000   13.435029   60.93503   34.06497
15      FRONT  434        57   47.50000   13.435029   60.93503   34.06497
16      FRONT  476        52   49.50000    3.535534   53.03553   45.96447
17      FRONT  476        47   49.50000    3.535534   53.03553   45.96447
18         NW    1       232  232.00000          NA         NA         NA
19         NW  154       140  138.50000    2.121320  140.62132  136.37868
20         NW  154       137  138.50000    2.121320  140.62132  136.37868
21         NW  188       252  253.00000    1.414214  254.41421  251.58579
22         NW  188       254  253.00000    1.414214  254.41421  251.58579
23         NW  353      3846 1957.50000 2670.742313 4628.24231 -713.24231
24         NW  353        69 1957.50000 2670.742313 4628.24231 -713.24231
25         NW  434       162  181.75000   80.748065  262.49806  101.00194
26         NW  434        93  181.75000   80.748065  262.49806  101.00194
27         NW  434       184  181.75000   80.748065  262.49806  101.00194
28         NW  434       288  181.75000   80.748065  262.49806  101.00194
29         NW  476       149  181.00000   45.254834  226.25483  135.74517
30         NW  476       213  181.00000   45.254834  226.25483  135.74517
31        SAW    1       143  147.16667   13.717386  160.88405  133.44928
32        SAW    1       137  147.16667   13.717386  160.88405  133.44928
33        SAW    1       170  147.16667   13.717386  160.88405  133.44928
34        SAW    1       149  147.16667   13.717386  160.88405  133.44928
35        SAW    1       153  147.16667   13.717386  160.88405  133.44928
36        SAW    1       131  147.16667   13.717386  160.88405  133.44928
37        SAW  154        79   61.66667   11.269428   72.93609   50.39724
38        SAW  154        65   61.66667   11.269428   72.93609   50.39724
39        SAW  154        52   61.66667   11.269428   72.93609   50.39724
40        SAW  154        48   61.66667   11.269428   72.93609   50.39724
41        SAW  154        74   61.66667   11.269428   72.93609   50.39724
42        SAW  154        52   61.66667   11.269428   72.93609   50.39724
43        SAW  154        51   61.66667   11.269428   72.93609   50.39724
44        SAW  154        69   61.66667   11.269428   72.93609   50.39724
45        SAW  154        65   61.66667   11.269428   72.93609   50.39724
46        SAW  188        68   55.50000    9.327379   64.82738   46.17262
47        SAW  188        47   55.50000    9.327379   64.82738   46.17262
48        SAW  188        57   55.50000    9.327379   64.82738   46.17262
49        SAW  188        50   55.50000    9.327379   64.82738   46.17262
50        SAW  353       868  696.60000  229.660184  926.26018  466.93982
51        SAW  353       728  696.60000  229.660184  926.26018  466.93982
52        SAW  353       354  696.60000  229.660184  926.26018  466.93982
53        SAW  353       930  696.60000  229.660184  926.26018  466.93982
54        SAW  353       603  696.60000  229.660184  926.26018  466.93982
55        SAW  434        31   31.57143    6.106203   37.67763   25.46523
56        SAW  434        33   31.57143    6.106203   37.67763   25.46523
57        SAW  434        19   31.57143    6.106203   37.67763   25.46523
58        SAW  434        30   31.57143    6.106203   37.67763   25.46523
59        SAW  434        35   31.57143    6.106203   37.67763   25.46523
60        SAW  434        36   31.57143    6.106203   37.67763   25.46523
61        SAW  434        37   31.57143    6.106203   37.67763   25.46523
62        SAW  476        96   60.75000   24.185050   84.93505   36.56495
63        SAW  476        54   60.75000   24.185050   84.93505   36.56495
64        SAW  476        41   60.75000   24.185050   84.93505   36.56495
65        SAW  476        52   60.75000   24.185050   84.93505   36.56495
66        STW    1       194  177.66667   20.256686  197.92335  157.40998
67        STW    1       184  177.66667   20.256686  197.92335  157.40998
68        STW    1       155  177.66667   20.256686  197.92335  157.40998
69        STW  154        44   49.66667    6.658328   56.32499   43.00834
70        STW  154        57   49.66667    6.658328   56.32499   43.00834
71        STW  154        48   49.66667    6.658328   56.32499   43.00834
72        STW  188       185  101.33333   72.500575  173.83391   28.83276
73        STW  188        57  101.33333   72.500575  173.83391   28.83276
74        STW  188        62  101.33333   72.500575  173.83391   28.83276
75        STW  353      2846 3367.66667  890.594371 4258.26104 2477.07230
76        STW  353      2861 3367.66667  890.594371 4258.26104 2477.07230
77        STW  353      4396 3367.66667  890.594371 4258.26104 2477.07230
78        STW  434        73   54.50000   26.162951   80.66295   28.33705
79        STW  434        36   54.50000   26.162951   80.66295   28.33705
80        STW  476       100  135.20000   31.523007  166.72301  103.67699
81        STW  476       115  135.20000   31.523007  166.72301  103.67699
82        STW  476       180  135.20000   31.523007  166.72301  103.67699
83        STW  476       129  135.20000   31.523007  166.72301  103.67699
84        STW  476       152  135.20000   31.523007  166.72301  103.67699
", header = TRUE)

使用此代码,我可以创建一个类似于我想要的图表:

ggplot(data,aes(x=Time,y=Abundance,col=Water_mass))+ geom_point() + ylab("Abundance")+ xlab("Time (days)")  +
  theme_bw() +
  theme(axis.line = element_line(colour = "black"),
        panel.grid.major = element_blank(),
        panel.border = element_rect(colour = "lightgray", fill=NA),
        panel.background = element_blank())+ 
  theme(strip.background = element_blank()) +
  labs(colour="Water mass") +
  geom_point(size=3) + 
  scale_y_continuous(limit=c(0,NA),oob=squish) + 
  geom_ribbon(aes(ymin = b$Lower, ymax = b$Upper, fill = b$Water_mass), data= b, alpha = 0.2, show.legend = FALSE, colour=NA)+ 
  geom_line(aes(y=Mean, colour=Water_mass), data= b, size=1.5)

enter image description here

但是,如果线条平滑,我更喜欢它。我能够平滑均值,但不是信心区域:

ggplot(data,aes(x=Time,y=Abundance,col=Water_mass))+ geom_point() +   
ylab("Abundance")+ xlab("Time (days)")  +
  theme_bw() +
  theme(axis.line = element_line(colour = "black"),
        panel.grid.major = element_blank(),
        panel.border = element_rect(colour = "lightgray", fill=NA),
        panel.background = element_blank())+ 
  theme(strip.background = element_blank()) +
  labs(colour="Water mass") +
  geom_point(size=3) + 
  scale_y_continuous(limit=c(0,NA),oob=squish) + 
  geom_ribbon(aes(ymin = b$Lower, ymax = b$Upper, fill = b$Water_mass), data= b, alpha = 0.2, show.legend = FALSE, colour=NA)+ 
  stat_smooth(se=F, size=1.5)

enter image description here

是否也可以平滑置信区域?

我也试过这个,它看起来像我想要的方式,除了它显示平均值的95%置信区间,而不是数据的一些传播度量:

 ggplot(data,aes(x=Time,y=Abundance,col=Water_mass))+ geom_point() + ylab("Abundance")+ xlab("Time (days)")  +
  theme_bw() +
  theme(axis.line = element_line(colour = "black"),
        panel.grid.major = element_blank(),
        panel.border = element_rect(colour = "lightgray", fill=NA),
        panel.background = element_blank())+ 
  theme(strip.background = element_blank()) +
  labs(colour="Water mass") + geom_point(size=3) + 
  geom_smooth(method="auto", se=TRUE, fullrange=FALSE, level=0.95, aes(fill = Water_mass), show.legend = FALSE) +
  scale_y_continuous(limit=c(0,NA),oob=squish)

enter image description here

0 个答案:

没有答案