我有两位长度分别为200和10的数组。我想将第一个与第二个分开然后得到余数。如何在C ++中使用位操作而不是将它们转换为十进制并使用modulo?
答案 0 :(得分:2)
这是std :: bitset的实现。
找到余数包括将除数向左移动直到它大于或等于被除数,然后开始向右移动,直到它处于原始位置。对于移位除数的每个新值,如果它大于运行的余数(以除数开始),则减去它以获得新的余数。如果除数总是等于余数,则返回0.一旦除数到达其原始的,未移位的位置,在从剩余部分中减去后,如果需要,则剩余部分结束。
BsMod
函数采用被除数和除数参数,被除数参数被替换为其余的就地,因此请确保参数是左值,以便得到结果。
默认测试(在main中)随机创建二进制字符串并打印出二进制结果。这有点难以验证,所以我做了另一个随机测试(Test()
),它使用整数值来自动变换结果。
#include <iostream>
#include <bitset>
#include <string>
#include <ctime>
#include <cstdlib>
// subtracts b from a, replacing a with the result
template <typename A, typename B>
void Subtract(A &a, const B &b) {
static const std::size_t minc = a.size() < b.size() ? a.size() : b.size();
bool borrow = false;
for(std::size_t i = 0; i<minc; ++i) {
const bool dif = a[i] ^ b[i] ^ borrow;
borrow = (a[i] && b[i] && borrow) || (!a[i] && (b[i] || borrow));
a[i] = dif;
}
for(std::size_t i=minc; borrow && i<a.size(); ++i) {
a[i] = borrow = !a[i];
}
}
// Returns the index of the highest set bit in b
// Returns unsigned -1 if all bits are 0
template <typename B>
std::size_t HiBit(const B& b) {
for(std::size_t i = b.size()-1; i+1; --i) {
if(b[i]) return i;
}
// b is zero
return ~std::size_t(0);
}
// Compare returns 1 if a>b, 0 if a==b or -1 if a<b
template <typename B>
int Compare(const B &a, const B &b) {
const std::size_t high = a.size()-1;
for(std::size_t i=high; i+1; --i) {
if(a[i] != b[i]) {
return int(a[i]) - int(b[i]);
}
}
return 0;
}
// nr is changed from the dividend to the remainder
template <typename B>
void BsMod(B &nr, B d) {
const std::size_t hi_n = HiBit(nr);
const std::size_t hi_d = HiBit(d);
if(hi_d > hi_n) return; // nr < d, keep n as r
if(hi_d == hi_n && Compare(nr, d) == -1) return; // nr < d, keep n as r
const std::size_t dshift = hi_n - hi_d;
d <<= dshift;
for(std::size_t i=0; i<=dshift; ++i) {
const int cmp = Compare(nr, d);
if(cmp == 0) { nr = B(); return; } // d evenly divides nr, so r is 0
if(cmp > 0) { // nr > shifted d
// the quotient would accumulate a 1 bit here, at the d shift position
Subtract(nr, d);
}
d >>= 1; // divide d by 2, shift back toward original position
}
}
template <typename B>
unsigned long long bs_to_ull(const B& b) {
unsigned long long result = 0;
for(std::size_t i=0; i<sizeof(unsigned long long)*8; ++i) {
result |= static_cast<unsigned long long>(b[i]) << i;
}
return result;
}
template <typename B>
void ull_to_bs(B& b, unsigned long long n) {
b.reset();
for(std::size_t i=0; i<sizeof(unsigned long long)*8; ++i) {
if(n & ((unsigned long long)1 << i)) b.set(i, true);
}
}
unsigned long long rand_ull() {
unsigned long long r = 0;
unsigned long long b = 0;
for(int i=0; i<sizeof(unsigned long long); ++i) {
r = r * 33 + rand();
b ^= rand();
b <<= 8;
}
return ((r << sizeof(unsigned long long)*4) | (r >> sizeof(unsigned long long )*4)) ^ b;
}
void Test(unsigned long long max=0, int max_iters=0) {
typedef unsigned long long uit;
typedef std::bitset<sizeof(unsigned long long)*8+8> bs;
typedef unsigned long long uit;
int iter_count = 0;
for(;;) {
uit a = rand_ull();
uit b = rand_ull();
if(max) {
a %= max;
b %= max;
}
if(rand() & 255) {
while(b > a) b >>= rand() & 3;
}
if(!b) continue;
bs bsa;
ull_to_bs(bsa, a);
bs bsb;
ull_to_bs(bsb, b);
BsMod(bsa, bsb);
uit ibsm = bs_to_ull(bsa);
uit m = a % b;
std::cout << a << " % " << b << " = " << m << " : " << ibsm << '\n';
if(ibsm != m) {
std::cout << "Error\n";
return;
}
++iter_count;
if(max_iters && iter_count > max_iters) break;
}
}
std::string RandomBinaryString(unsigned bit_count) {
std::string binstr;
for(unsigned i=0; i<bit_count; ++i) {
binstr += ((rand() >> (i%5)) ^ i) & 1 ? '1' : '0';
}
return binstr;
}
void TrimLeadingZeros(std::string& s) {
if(s.length() < 2 || s[0] != '0') return;
for(std::string::size_type i=1; i<s.length()-1; ++i) {
if(s[i] != '0') {
s = s.substr(i);
return;
}
}
s = s.substr(s.length()-1);
}
int main() {
srand((unsigned int)time(0));
//Test(0, 10); // test with integer values (which are easy to auto-validate)
//return 0;
std::string a = RandomBinaryString(200);
std::string b = RandomBinaryString(10);
static const int max_bitount = 220;
typedef std::bitset<max_bitount> bs;
bs bsa(a);
bs bsb(b);
// both arguments must have the same type (number of bits)
// bsa gets replaced with bsa modulo bsb
BsMod(bsa, bsb);
std::string c = bsa.to_string();
TrimLeadingZeros(c);
std::cout << a << "\n mod\n" << b << "\n ==\n" << c << '\n';
}
答案 1 :(得分:1)
我先来看看使用std::bitset。这似乎比数组更容易使用。其次阅读有关使用按位运算执行模数的文章。我发现的其中一篇文章是this。祝你好运。
答案 2 :(得分:0)
首先为两种类型的数字(200位和10位)定义移位减法。然后起诉到师。