我正在尝试编写一个Python类,以便使用.coef_
属性值来选择scikit-learn 0.17.1中的功能。我想只选择.coef_
值位于第10百分位及以上(第10,11,12,13,14,15,16,......,第94,第95,第96,第97,第98 ,99th,100th)。
我无法使用SelectFromModels()
执行此操作,因此我尝试为此功能选择编写名为ChooseCoefPercentile()
的自定义类。我正在尝试使用以下函数根据.coef_
的百分位数选择要素:
from sklearn.datasets import load_iris
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(load_iris().data,
load_iris().target, test_size=0.33, random_state=42)
def percentile_sep(coefs,p):
from numpy import percentile as pc
gt_p = coefs[coefs>pc(coefs,p)].argsort()
return list(gt_p)
from sklearn.base import BaseEstimator, TransformerMixin
class ChooseCoefPercentile(BaseEstimator, TransformerMixin):
def __init__(self, est_, perc=50):
self.perc = perc
self.est_ = est_
def fit(self, *args, **kwargs):
self.est_.fit(*args, **kwargs)
return self
def transform(self, X):
perc_i = percentile_sep(self.est_.coef_,self.perc)
i_ = self.est_.coef_.argsort()[::-1][perc_i[:]]
X_tr = X[:,i_]
self.coef_ = self.est_.coef_[i_]
return X_tr
# Import modules
from sklearn import svm,ensemble,pipeline,grid_search
# Instantiate feature selection estimator and classifier
f_sel = ChooseCoefPercentile(svm.SVC(kernel='linear'),perc=10)
clf = ensemble.RandomForestClassifier(random_state=42,oob_score=False)
CustPipe = pipeline.Pipeline([("feat_s",f_sel),("Clf",clf)])
bf_est = grid_search.GridSearchCV(CustPipe,cv=2,param_grid={'Clf__n_estimators':[100,200]})
bf_est.fit(X_train, y_train)
我收到以下错误:
Traceback (most recent call last):
File "C:\Python27\test.py", line 35, in <module>
bf_est.fit(X_train, y_train)
File "C:\Python27\lib\site-packages\sklearn\grid_search.py", line 804, in fit
return self._fit(X, y, ParameterGrid(self.param_grid))
File "C:\Python27\lib\site-packages\sklearn\grid_search.py", line 553, in _fit
for parameters in parameter_iterable
File "C:\Python27\lib\site-packages\sklearn\externals\joblib\parallel.py", line 800, in __call__
while self.dispatch_one_batch(iterator):
File "C:\Python27\lib\site-packages\sklearn\externals\joblib\parallel.py", line 658, in dispatch_one_batch
self._dispatch(tasks)
File "C:\Python27\lib\site-packages\sklearn\externals\joblib\parallel.py", line 566, in _dispatch
job = ImmediateComputeBatch(batch)
File "C:\Python27\lib\site-packages\sklearn\externals\joblib\parallel.py", line 180, in __init__
self.results = batch()
File "C:\Python27\lib\site-packages\sklearn\externals\joblib\parallel.py", line 72, in __call__
return [func(*args, **kwargs) for func, args, kwargs in self.items]
File "C:\Python27\lib\site-packages\sklearn\cross_validation.py", line 1531, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File "C:\Python27\lib\site-packages\sklearn\pipeline.py", line 164, in fit
Xt, fit_params = self._pre_transform(X, y, **fit_params)
File "C:\Python27\lib\site-packages\sklearn\pipeline.py", line 145, in _pre_transform
Xt = transform.fit_transform(Xt, y, **fit_params_steps[name])
File "C:\Python27\lib\site-packages\sklearn\base.py", line 458, in fit_transform
return self.fit(X, y, **fit_params).transform(X)
File "C:\Python27\test.py", line 21, in transform
i_ = self.est_.coef_.argsort()[::-1][perc_i[:]]
IndexError: index 6 is out of bounds for axis 0 with size 3
以下行中的.coef_
值的NumPy数组似乎存在问题:
i_ = self.est_.coef_.argsort()[::-1][perc_i[:]]
在这一行中,我试图仅根据其索引选择那些位于第10个百分位数以上的.coef_
值。索引存储在列表perc_i
中。我似乎无法使用此列表正确地索引.coef_
数组。
是否发生此错误,因为需要将数组划分为多行?或者我应该使用其他方法根据百分位数提取.coef_
值?
答案 0 :(得分:1)
我建议使用基于行数的模运算来计算系数矩阵的相关列:
def transform(self, X):
perc_i = percentile_sep(self.est_.coef_,self.perc)
nclass=self.est_.coef_.shape[0]
i_ = list(set(map(lambda x:x%nclass,perc_i)))
X_tr = X[:,i_]
self.coef_ = self.est_.coef_[i_]
return X_tr