我想找到最有效(最快)的方法来计算lat长坐标对之间的距离。
使用ChildVM.WhateverProperty
和sapply
提交了一个效率不高的解决方案(here)。我相信如果人们spDistsN1{sp}
spDistsN1{sp}
data.table
与:=
运营商一起使用,我可以做得更快,但我无法做到这一点。有什么建议吗?
以下是可重现的示例:
# load libraries
library(data.table)
library(dplyr)
library(sp)
library(rgeos)
library(UScensus2000tract)
# load data and create an Origin-Destination matrix
data("oregon.tract")
# get centroids as a data.frame
centroids <- as.data.frame(gCentroid(oregon.tract,byid=TRUE))
# Convert row names into first column
setDT(centroids, keep.rownames = TRUE)[]
# create Origin-destination matrix
orig <- centroids[1:754, ]
dest <- centroids[2:755, ]
odmatrix <- bind_cols(orig,dest)
colnames(odmatrix) <- c("origi_id", "long_orig", "lat_orig", "dest_id", "long_dest", "lat_dest")
data.table
odmatrix[ , dist_km := spDistsN1(as.matrix(long_orig, lat_orig), as.matrix(long_dest, lat_dest), longlat=T)]
odmatrix$dist_km <- sapply(1:nrow(odmatrix),function(i)
spDistsN1(as.matrix(odmatrix[i,2:3]),as.matrix(odmatrix[i,5:6]),longlat=T))
head(odmatrix)
> origi_id long_orig lat_orig dest_id long_dest lat_dest dist_km
> (chr) (dbl) (dbl) (chr) (dbl) (dbl) (dbl)
> 1 oregon_0 -123.51 45.982 oregon_1 -123.67 46.113 19.0909
> 2 oregon_1 -123.67 46.113 oregon_2 -123.95 46.179 22.1689
> 3 oregon_2 -123.95 46.179 oregon_3 -123.79 46.187 11.9014
> 4 oregon_3 -123.79 46.187 oregon_4 -123.83 46.181 3.2123
> 5 oregon_4 -123.83 46.181 oregon_5 -123.85 46.182 1.4054
> 6 oregon_5 -123.85 46.182 oregon_6 -123.18 46.066 53.0709
答案 0 :(得分:7)
我编写了自己的geosphere::distHaversine
版本,以便更自然地适合data.table
:=
来电,并且可能会在这里使用
dt.haversine <- function(lat_from, lon_from, lat_to, lon_to, r = 6378137){
radians <- pi/180
lat_to <- lat_to * radians
lat_from <- lat_from * radians
lon_to <- lon_to * radians
lon_from <- lon_from * radians
dLat <- (lat_to - lat_from)
dLon <- (lon_to - lon_from)
a <- (sin(dLat/2)^2) + (cos(lat_from) * cos(lat_to)) * (sin(dLon/2)^2)
return(2 * atan2(sqrt(a), sqrt(1 - a)) * r)
}
以下是针对原始geosphere::distHaversine
以及geosphere::distGeo
dt1 <- copy(odmatrix); dt2 <- copy(odmatrix); dt3 <- copy(odmatrix)
library(microbenchmark)
microbenchmark(
dtHaversine = {
dt1[, dist := dt.haversine(lat_orig, long_orig, lat_dest, long_dest)]
} ,
haversine = {
dt2[ , dist := distHaversine(matrix(c(long_orig, lat_orig), ncol = 2),
matrix(c(long_dest, lat_dest), ncol = 2))]
},
geo = {
dt3[ , dist := distGeo(matrix(c(long_orig, lat_orig), ncol = 2),
matrix(c(long_dest, lat_dest), ncol = 2))]
}
)
# Unit: microseconds
# expr min lq mean median uq max neval
# dtHaversine 370.300 396.6210 434.5841 411.4305 463.9965 906.797 100
# haversine 651.974 681.1745 776.6127 706.2760 731.3480 1505.765 100
# geo 647.699 679.8285 743.4914 706.0465 742.1605 1272.310 100
当然,由于在两种不同技术(geo&amp; hasrsine)中计算距离的方式,结果会略有不同。
答案 1 :(得分:6)
感谢@ chinsoon12的评论,我找到了一个结合distGeo{geosphere}
和data.table
的快速解决方案。在我的笔记本电脑中,快速解决方案的速度比替代方案快120倍。
让我们将数据集放大以比较速度性能。
# Multiplicate data observations by 1000
odmatrix <- odmatrix[rep(seq_len(nrow(odmatrix)), 1000), ]
system.time(
odmatrix$dist_km <- sapply(1:nrow(odmatrix),function(i)
spDistsN1(as.matrix(odmatrix[i,2:3]),as.matrix(odmatrix[i,5:6]),longlat=T))
)
> user system elapsed
> 222.17 0.08 222.84
# load library
library(geosphere)
# convert the data.frame to a data.table
setDT(odmatrix)
system.time(
odmatrix[ , dist_km2 := distGeo(matrix(c(long_orig, lat_orig), ncol = 2),
matrix(c(long_dest, lat_dest), ncol = 2))/1000]
)
> user system elapsed
> 1.76 0.03 1.79