在数百万个坐标上按组计算最大距离

时间:2018-05-29 06:21:17

标签: r data.table geospatial sf

在R?

中按组计算一组坐标之间的最大距离的最有效方法是什么?

示例数据: 我有这样的数据,但不是x10000(这是示例)我拥有的数据更像是2500万个条目。

library(data.table)
data <- data.table(latitude=sample(seq(0,90,by=0.001), 10000, replace = TRUE),
               longitude=sample(seq(0,180,by=0.001), 10000, replace = TRUE))
groupn <- nrow(data)/1000
data$group <- sample(seq(1,groupn,by=1),10000,replace=T)

我目前的方法很慢:

data <- data[order(data$group),]
library(dplyr)
library(sf)
library(foreach)
distlist <- foreach(i=1:10)%do%{
  tempsf <- st_as_sf(filter(data,group==i), coords= c("longitude", "latitude"), crs=4326)
  max(st_distance(tempsf, tempsf))
  }

有些天才可以帮我加快速度吗?

3 个答案:

答案 0 :(得分:2)

试试这个:

Euclidean dist:

echo '<a class="btn btn-info" href="'.$url.'">Video Link</a>';

WGS84:

> system.time(out1 <- tapply(1:nrow(data), data$group, function(x) max(dist(data[x, 1:2]))))
   user  system elapsed 
   0.14    0.00    0.14 
> out1
   1        2        3        4        5        6        7        8        9       10 
199.2716 197.1172 194.7018 197.2652 196.3747 197.6728 194.7344 197.8781 195.3837 195.0123 

Haversine方法:

> auxF <- function(x) {
+   require(sp)
+   
+   tempsf <- data[x, 1:2]
+   coordinates(tempsf) <- c("longitude", "latitude")
+   proj4string(tempsf) = "+proj=longlat +ellps=WGS84 +no_defs"
+   return(max(spDists(tempsf)))
+ }
> 
> system.time(out2 <- tapply(1:nrow(data), data$group, auxF))
   user  system elapsed 
   4.71    0.00    4.76 
> out2
   1        2        3        4        5        6        7        8        9       10 
19646.04 19217.48 19223.27 19543.99 19318.55 18856.65 19334.11 19679.45 18840.90 19460.14 

对于700万条记录,您可以假设欧几里德距离或将您的点投影到平面,这样您就可以使用欧几里德距离,因为我们知道每组的凸包的点之间的最大距离减少了操作,并且不需要大量的RAM:

> system.time(out3 <- tapply(1:nrow(data), data$group, function(x) max(distm(as.matrix(data[x,.(longitude,latitude)], fun=distHaversine)))))
   user  system elapsed 
  13.24    0.01   13.30 
> out3
   1        2        3        4        5        6        7        8        9       10 
19644749 19216989 19223012 19542956 19317958 18856273 19333424 19677917 18840641 19459353 

大数据:

> system.time(out4 <- tapply(1:nrow(data), data$group, function(x) max(dist(data[x, 1:2][chull(data[x, 1:2]), ]))))
   user  system elapsed 
   0.03    0.00    0.03 
> out4
       1        2        3        4        5        6        7        8        9       10 
199.2716 197.1172 194.7018 197.2652 196.3747 197.6728 194.7344 197.8781 195.3837 195.0123 

答案 1 :(得分:2)

感谢Juan Antonio使用tapply的想法。 。 。我最终使用了你构建的sp函数,它是最快的。

auxF <- function(x) {
require(sp)
tempsf <- data[x, 1:2]
coordinates(tempsf) <- c("longitude", "latitude")
proj4string(tempsf) = "+proj=longlat +ellps=WGS84 +no_defs"
return(max(spDists(tempsf)))
}
out1 <- tapply(1:nrow(data), data$group, auxF)

这也有效: dt.haversine @ SymbolixAU(像往常一样棒)built

dt.haversine <- function(lat_from, lon_from, lat_to, lon_to, r = 6378137){
  radians <- pi/180
  lat_to <- lat_to * radians
  lat_from <- lat_from * radians
  lon_to <- lon_to * radians
  lon_from <- lon_from * radians
  dLat <- (lat_to - lat_from)
  dLon <- (lon_to - lon_from)
  a <- (sin(dLat/2)^2) + (cos(lat_from) * cos(lat_to)) * (sin(dLon/2)^2)
  return(2 * atan2(sqrt(a), sqrt(1 - a)) * r)
}
library(geosphere)
out1 <- tapply(1:nrow(data), data$group, function(x) max(distm(as.matrix(data[x,c("longitude","latitude")], fun=dt.haversine))))

答案 2 :(得分:0)

这是使用data.table.SD的另一种方式

> library(data.table)
> data <- data.table(
+   latitude=sample(seq(0,90,by=0.001), 10000, replace = TRUE),
+   longitude=sample(seq(0,180,by=0.001), 10000, replace = TRUE)
+ )
> groupn <- nrow(data)/1000
> data$group <- sample(seq(1,groupn,by=1),10000,replace=T)
> 
> way1 <- function() {
+   data[,
+     .(maxdist = max(
+       dist(
+         .SD[1:.N, .(latitude, longitude)]
+       )
+     )),
+     keyby = group
+   ]
+ }
> 
> way2 <- function() {
+   tapply(1:nrow(data), data$group, function(x) max(dist(data[x, 1:2])))
+ }
> 
> system.time(out1 <- way1())
   user  system elapsed 
   0.16    0.03    0.18 
> out1
    group  maxdist
 1:     1 196.7296
 2:     2 195.9555
 3:     3 196.0794
 4:     4 196.3476
 5:     5 195.2577
 6:     6 196.0791
 7:     7 198.5209
 8:     8 196.6944
 9:     9 195.2630
10:    10 194.4611
> 
> system.time(out1 <- way2())
   user  system elapsed 
   0.22    0.10    0.60 
> out1
       1        2        3        4        5        6        7        8        9       10 
196.7296 195.9555 196.0794 196.3476 195.2577 196.0791 198.5209 196.6944 195.2630 194.4611 
> 
> library(microbenchmark)
> microbenchmark(way1(), way2())
Unit: milliseconds
   expr      min       lq     mean   median       uq       max neval cld
 way1() 172.3232 231.3411 327.1674 266.9135 370.9586 1569.7742   100   a
 way2() 181.7716 228.1266 346.2764 285.8394 444.8963  800.4725   100   a