我试图实现一个与IBM的OLP(线性编程的建模语言)非常相似的EDSL。
{-# LANGUAGE GADTs #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleInstances #-}
-- Numbers at the type level
data Peano = Zero | Successor Peano
-- Counting Vector Type. Type information contains current length
data Vector peanoNum someType where
Nil :: Vector Zero someType
(:+) :: someType
-> Vector num someType
-> Vector (Successor num) someType
infixr 5 :+
-- Generate Num-th nested types
-- For example: Iterate (S (S Z)) [] Double => [[Double]]
type family Iterate peanoNum constructor someType where
Iterate Zero cons typ = typ
Iterate (Successor pn) cons typ =
cons (Iterate pn cons typ)
-- DSL spec
data Statement =
DecisionVector [Double]
| Minimize Statement
| Iteration `Sum` Expression
| Forall Iteration Statement
| Statement :| Statement
| Constraints Statement
infixl 8 `Sum`
infixl 3 :|
data Iteration =
String `In` [Double]
| String `Ins` [String]
data Expression where
EString :: String -> Expression
EFloat :: Double -> Expression
(:?) :: Vector n Expression -> Iterate (n) [] Double -> Expression
(:*) :: Expression -> Expression -> Expression
Lt :: Expression -> Expression -> Expression
Gt :: Expression -> Expression -> Expression
Id :: String -> Expression
infixr 5 `Lt`
infixr 5 `Gt`
infixr 6 :*
infixr 7 :?
test :: Statement
test =
let rawMaterial = 205
products = ["light", "medium", "heavy"]
demand = [59, 12, 13]
processes = [1, 2]
production = [[12,16], [1,7], [4,2]]
consumption = [25, 30]
-- foo = (EId "p" :+ EId "f" :+ Nil) `Subscript` production
-- bar = (EId "p" :+ Nil) `Subscript` cost
run = []
cost = [300, 400]
in
DecisionVector run :|
Minimize
(Sum ("p" `In` processes)
((Id "p" :+ Nil) :? cost :*
(Id "p" :+ Nil) :? run)) :|
Constraints
(Sum ("p" `In` processes)
((Id "p" :+ Nil) :? consumption :*
(Id "p" :+ Nil) :? run `Lt` EFloat rawMaterial) :|
Forall ("q" `Ins` products)
(Sum ("p" `In` processes)
((Id "q" :+ Id "p" :+ Nil) :? production :*
(Id "p" :+ Nil) :? run `Gt`
(Id "q" :+ Nil) :? demand)))
instance Show Statement where
show (DecisionVector v) = show v
show (Minimize s) = "(Minimize " ++ show s ++ ")"
show (i `Sum` e) = "(" ++ show i ++ " `Sum` " ++ show e ++ ")"
show (Forall i e) = "(Forall " ++ show i ++ show e ++ ")"
show (sa :| sb) = "(" ++ show sa ++ show sb ++ ")"
show (Constraints s) = "(Constraints " ++ show s ++ ")"
instance Show Iteration where
show (str `In` d) = "(" ++ show str ++ " `In` " ++ show d ++ ")"
show (str `Ins` d) = "(" ++ show str ++ " `Ins` " ++ show d ++ ")"
instance Show Expression where
show (EString s) = "(EString " ++ show s ++ ")"
show (EFloat f) = "(EFloat " ++ show f ++ ")"
show (Lt ea eb) = "(" ++ show ea ++ " `Lt` " ++ show eb ++ ")"
show (Gt ea eb) = "(" ++ show ea ++ " `Gt` " ++ show eb ++ ")"
show (ea :* eb) = "(" ++ show ea ++ " :* " ++ show eb ++ ")"
show (Id s) = "(Id " ++ show s ++ ")"
show (vec :? dbl) = "(" ++ show vec ++ " :? " ++ "dbl" ++ ")"
instance Show (Vector p Expression) where
show (Nil) = "Nil"
show (e :+ v) = "(" ++ show e ++ " :+ " ++ show v ++ ")"
-- eval_opl :: Statement -> [Double]
let rawMaterial = 205
products = ["light", "medium", "heavy"]
demand = [59, 12, 13]
processes = [1, 2]
production = [[12,16], [1,7], [4,2]]
consumption = [25, 30]
-- foo = (EId "p" :+ EId "f" :+ Nil) `Subscript` production
-- bar = (EId "p" :+ Nil) `Subscript` cost
run = []
cost = [300, 400]
in
DecisionVector run :|
Minimize
(Sum ("p" `In` processes)
((Id "p" :+ Nil) :? cost :*
(Id "p" :+ Nil) :? run)) :|
Constraints
(Sum ("p" `In` processes)
((Id "p" :+ Nil) :? consumption :*
(Id "p" :+ Nil) :? run `Lt` EFloat rawMaterial) :|
Forall ("q" `Ins` products)
(Sum ("p" `In` processes)
((Id "q" :+ Id "p" :+ Nil) :? production :*
(Id "p" :+ Nil) :? run `Gt`
(Id "q" :+ Nil) :? demand)))
对应于opl代码
float rawMaterial = 205;
{string} products = {"light","medium","heavy"};
float demand[products] = [59,12,13];
{string} processes = {"1","2"};
float production[products][processes] = [[12,16],[1,7],[4,2]];
float consumption[processes] = [25,30];
float cost[processes] = [300,400];
dvar float+ run[processes];
minimize sum (p in processes) cost[p] * run[p];
constraints {
sum (p in processes) consumption[p] * run[p] <= rawMaterial;
forall (q in products)
sum (p in processes) production[q][p] * run[p] >= demand[q];
}
(:?) :: Vector n Expression -> Iterate (n) [] Double -> Expression
以及
instance Show Expression where
[...]
show (vec :? dbl) = "(" ++ show vec ++ " :? " ++ "dbl" ++ ")"
OPL使用括号进行数组订阅,我尝试映射订阅 使用以下符号
到我的EDSL((Id "p" :+ Id "f" :+ Nil) :? consumption
对应于以下意义上的OPL:
consumption[p][f]
前者中的(Id&#34; p&#34;:+ Id&#34; f&#34;:+ Nil)构造Vector类型的值,其包含关于所述向量的长度的类型级别信息。 根据构造函数的定义:?,你可以看到, Iterate(n)[] Double因此会扩展为[[Double]]。 这整齐地按预期工作。但是,反过来使用生成的语法树,我需要模式匹配实际值。
show (vec :? dbl) = "(" ++ show vec ++ " :? " ++ "dbl" ++ ")"
问题:以上行有效,但我不知道如何使用实际数据。我如何模式匹配?甚至可以使用数据吗? 通过明显的
替换dbl(Iterate (Successor (Successor Zero)) [] Double)
不起作用。我也尝试构建一个数据系列,但我无法找到一种方法来递归创建所有任意嵌套的Double列表:
Double
[Double]
[[Double]]
[[[Double]]]
...
答案 0 :(得分:2)
为了了解Iterate n [] Double
实际存储的值,您必须了解有关n
的一些信息。此信息通常由某些GADT的索引给出,这些索引对应于索引本身的归纳结构(通常称为singleton)。
但幸运的是,您已将Nat
索引存储在Vector
的结构中。您已经拥有了手头所需的所有信息,您只需要模式匹配!例如
instance Show Expression where
...
show (vec :? dbl) = "(" ++ show vec ++ go vec dbl ++ ")" where
go :: Vector n x -> Iterate n [] Double -> String
go Nil a = show a
go (_ :+ n) a = "[" ++ intercalate "," (map (go n) a) ++ "]"
请注意,在第一种模式中,Nil
的类型会为您提供n ~ 0
,而Iterate 0 [] Double ~ Double
会为您提供n ~ k + 1
(根据定义)。在第二种模式中,某些k
和Iterate n [] Double ~ [ Iterate k [] Double ]
有Nat
。 Iterate
上的模式匹配允许您查看类型族的归纳结构。
您在foo :: forall n . Vector n () -> Iterate n F X -> Y -- for some X,Y
上撰写的每个功能都会显示为
Iterate
因为你必须有这样的价值级证明才能在class KnownNat n where
isNat :: Vector n ()
instance KnownNat 'Z where isNat = Nil
instance KnownNat n => KnownNat ('S n) where isNat = () :+ isNat
上写任何归纳函数。如果你不喜欢随身携带这些&#34;假的&#34;值,您可以使用类隐含它们:
Vector
但在这种情况下,由于您的AST已经包含具体的PhoneLine
,因此您无需进行任何额外的工作来访问索引的实际值 - 只需在向量上进行模式匹配。
答案 1 :(得分:0)
您有几个选项,所有这些选项都相当于在值级别编码迭代深度,以便您可以对其进行模式匹配。
最简单的方法是创建一个GADT来表示类型构造函数的应用程序的迭代:
String confirm = s1.nextLine();
if (confirm.equalsIgnoreCase("Enter")) {
//continue code
}
如果您与类型系列绑定,则可以使用单例。单例是一个由单个值居住的类型,您可以对其进行模式匹配,以向编译器介绍有关该类型的已知事实。以下是自然数的单例:
data IterateF peanoNum f a where
ZeroF :: a -> IterateF Zero f a
SuccessorF :: f (IterateF pn f a) -> IterateF (Successor pn) f a
instance Functor f => Functor (IterateF peanoNum f) where
fmap f (ZeroF a) = ZeroF $ f a
fmap f (SuccessorF xs) = SuccessorF $ fmap (fmap f) xs
-- There's also an Applicative instance, see Data.Functor.Compose
没有{-# LANGUAGE FlexibleContexts #-}
data SPeano pn where
SZero :: SPeano Zero
SSuccessor :: Singleton (SPeano pn) => SPeano pn -> SPeano (Successor pn)
class Singleton a where
singleton :: a
instance Singleton (SPeano Zero) where
singleton = SZero
instance Singleton (SPeano s) => Singleton (SPeano (Successor s)) where
singleton = SSuccessor singleton
类型类的更简单的SPeano
单例是等价的,但是这个版本不需要编写尽可能多的证明,而是在后续构造中捕获它们。
如果我们修改上一节中的Singleton
GADT来捕获相同的证明(因为我很懒),只要我们有IterateF
单身,我们就可以转换为GADT。无论如何,我们都可以轻松地从GADT转换。
SPeano
现在,我们可以轻松地为data IterateF peanoNum f a where
ZeroF :: a -> IterateF Zero f a
SuccessorF :: Singleton (SPeano pn) => f (IterateF pn f a) -> IterateF (Successor pn) f a
toIterateF :: Functor f => SPeano pn -> Iterate pn f a -> IterateF pn f a
toIterateF SZero a = ZeroF a
toIterateF (SSuccessor pn) xs = SuccessorF $ fmap (toIterateF pn) xs
getIterateF :: Functor f => IterateF pn f a -> Iterate pn f a
getIterateF (ZeroF a) = a
getIterateF (SuccessorF xs) = fmap getIterateF xs
制作替代表示形式,它是IterateF
类型系列的单例和应用程序。
Iterate
我很懒,不喜欢写GADT可以为我处理的证明,所以我只是保留data Iterated pn f a = Iterated (SPeano pn) (Iterate pn f a)
IterateF
并为{{1}编写函数就它而言。
GADT
Iterated
中的模式匹配是为了介绍toIterated :: Functor f => IterateF pn f a -> Iterated pn f a
toIterated xs@(ZeroF _) = Iterated singleton (getIterateF xs)
toIterated xs@(SuccessorF _) = Iterated singleton (getIterateF xs)
fromIterated :: Functor f => Iterated pn f a -> IterateF pn f a
fromIterated (Iterated pn xs) = toIterateF pn xs
instance Functor f => Functor (Iterated pn f) where
fmap f = toIterated . fmap f . fromIterated
构造中捕获的证明。如果我们有更复杂的事情要做,我们可能希望在Dict
在
的特定情况下toIterated
您有一个SuccessorF
,它在值级别编码(:?) :: Vector n Expression -> Iterate (n) [] Double -> Expression
的迭代深度。您可以在向量上进行模式匹配,即Vector n
或Iterate n []
,以证明Nil
是(_ :+ xs)
或列表。您可以将此用于简单的情况,例如show
ing the nested values,或者您可以将Iterate n []
转换为另一个单例,以使用前一部分中更强大的表示之一。
Double