import pandas as pd
values = {'C1': ['B', 'A'],
'C2': ['B', 'A'],
'C3': ['B', 'A'],
}
df = pd.DataFrame(values)
df.set_index(keys=['C1', 'C2'], inplace=True)
grouped = df.groupby(level='C1', sort=False)
for name, group in grouped:
print(name)
产量
一个
乙
但是,我希望
乙
甲
如何获得第二个结果?
答案 0 :(得分:0)
可能是我的评论中提到的已知问题。
也许这是一个有效的解决方法:
import pandas as pd
values = {'C1': ['B', 'A'],
'C2': ['B', 'A'],
'C3': ['B', 'A'],
}
df = pd.DataFrame(values)
grouped = df.groupby(['C1', 'C2'], sort=False)['C3']
for name, group in grouped:
print group.iloc[0]
结果
乙
A
答案 1 :(得分:0)
考虑重组数据
除非您的真实数据要求您重置为MultiIndex
,否则在执行groupby()
之前似乎无需重新编制索引。
如果您groupby
C1
,只有您获得所需的示例输出:
import pandas as pd
values = {'C1': ['B', 'A'],
'C2': ['B', 'A'],
'C3': ['B', 'A'],
}
df = pd.DataFrame(values)
print 'Original DataFrame'
print df
print
df2 = df.set_index(keys=['C1', 'C2'], inplace=False)
print 'Reindexed DataFrame'
print df2
print
grouped = df.groupby(['C1'], sort=False)
grouped2 = df2.groupby(level='C1', sort=False)
print 'Original Groups'
print grouped.groups
print
print 'Reindexed Groups'
print grouped2.groups
print
print 'Original Group for loop output'
for name, group in grouped:
print(name)
print
print 'Reindexed Group for loop output'
for name, group in grouped2:
print(name)
Original DataFrame
C1 C2 C3
0 B B B
1 A A A
Reindexed DataFrame
C3
C1 C2
B B B
A A A
Original Groups
{'A': [1], 'B': [0]}
Reindexed Groups
{'A': [('A', 'A')], 'B': [('B', 'B')]}
Original Group for loop output
B
A
Reindexed Group for loop output
A
B