I have experimental observations in a volume:
import numpy as np
# observations are not uniformly spaced
x = np.random.normal(0, 1, 10)
y = np.random.normal(5, 2, 10)
z = np.random.normal(10, 3, 10)
xx, yy, zz = np.meshgrid(x, y, z, indexing='ij')
# fake temperatures at those coords
tt = xx*2 + yy*2 + zz*2
# sample distances
dx = np.diff(x)
dy = np.diff(y)
dz = np.diff(z)
grad = np.gradient(tt, [dx, dy, dz]) # returns error
This gives me the error:
ValueError: operands could not be broadcast together with shapes (10,10,10) (3,9) (10,10,10)
.
EDIT: according to @jay-kominek in the comments below:
np.gradient won't work for you, it simply doesn't handle unevenly sampled data.
I've updated the question. Is there any function which can can do my computation?
答案 0 :(得分:3)
需要注意两点:首先,标量是单个值,而不是数组。其次,函数的签名是numpy.gradient(f, *varargs, **kwargs)
。请注意varargs
之前的*。这意味着如果varargs
是一个列表,则会传递*varargs
。或者您可以将varargs
的元素作为单独的参数提供。
因此,np.gradient
想要每个维度的距离都有一个值,例如:
np.gradient(tt, np.diff(x)[0], np.diff(y)[0], np.diff(z)[0])
或:
distances = [np.diff(x)[0], np.diff(y)[0], np.diff(z)[0]]
np.gradient(tt, *distances)
答案 1 :(得分:0)
要传递给np.gradient
的所需dx ...不是差异网格,而是每个只有一个标量。所以grad = np.gradient(tt,0.1,0.1,0.1)
似乎有效。