将NumPy数组随机分成训练和测试/验证数据集的好方法是什么?类似于Matlab中的cvpartition
或crossvalind
函数。
答案 0 :(得分:95)
如果您想将数据集分成两半,如果需要跟踪索引,可以使用numpy.random.shuffle
或numpy.random.permutation
:
import numpy
# x is your dataset
x = numpy.random.rand(100, 5)
numpy.random.shuffle(x)
training, test = x[:80,:], x[80:,:]
或
import numpy
# x is your dataset
x = numpy.random.rand(100, 5)
indices = numpy.random.permutation(x.shape[0])
training_idx, test_idx = indices[:80], indices[80:]
training, test = x[training_idx,:], x[test_idx,:]
repeatedly partition the same data set for cross validation的方法有很多种。一种策略是从数据集重新采样,重复:
import numpy
# x is your dataset
x = numpy.random.rand(100, 5)
training_idx = numpy.random.randint(x.shape[0], size=80)
test_idx = numpy.random.randint(x.shape[0], size=20)
training, test = x[training_idx,:], x[test_idx,:]
最后,sklearn包含several cross validation methods(k-fold,leave-n-out,...)。它还包括更高级的"stratified sampling"方法,这些方法创建了与某些功能相关的数据分区,例如,以确保在训练和测试集中存在相同比例的正面和负面示例。
答案 1 :(得分:41)
还有另一种选择需要使用scikit-learn。如scikit's wiki describes,您只需使用以下说明:
from sklearn.model_selection import train_test_split
data, labels = np.arange(10).reshape((5, 2)), range(5)
data_train, data_test, labels_train, labels_test = train_test_split(data, labels, test_size=0.20, random_state=42)
通过这种方式,您可以将您尝试拆分的数据标签与培训和测试保持同步。
答案 2 :(得分:32)
请注意。如果您需要训练,测试和验证集,您可以这样做:
from sklearn.cross_validation import train_test_split
X = get_my_X()
y = get_my_y()
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
x_test, x_val, y_test, y_val = train_test_split(x_test, y_test, test_size=0.5)
这些参数将提供70%的训练,15%用于测试和val组。希望这可以帮助。
答案 3 :(得分:9)
由于sklearn.cross_validation
模块已弃用,您可以使用:
import numpy as np
from sklearn.model_selection import train_test_split
X, y = np.arange(10).reshape((5, 2)), range(5)
X_trn, X_tst, y_trn, y_tst = train_test_split(X, y, test_size=0.2, random_state=42)
答案 4 :(得分:4)
您也可以考虑将分层划分为训练和测试集。 Startized division还会随机生成训练和测试集,但这样可以保留原始的比例。这使得训练和测试集更好地反映了原始数据集的属性。
import numpy as np
def get_train_test_inds(y,train_proportion=0.7):
'''Generates indices, making random stratified split into training set and testing sets
with proportions train_proportion and (1-train_proportion) of initial sample.
y is any iterable indicating classes of each observation in the sample.
Initial proportions of classes inside training and
testing sets are preserved (stratified sampling).
'''
y=np.array(y)
train_inds = np.zeros(len(y),dtype=bool)
test_inds = np.zeros(len(y),dtype=bool)
values = np.unique(y)
for value in values:
value_inds = np.nonzero(y==value)[0]
np.random.shuffle(value_inds)
n = int(train_proportion*len(value_inds))
train_inds[value_inds[:n]]=True
test_inds[value_inds[n:]]=True
return train_inds,test_inds
y = np.array([1,1,2,2,3,3])
train_inds,test_inds = get_train_test_inds(y,train_proportion=0.5)
print y[train_inds]
print y[test_inds]
此代码输出:
[1 2 3]
[1 2 3]
答案 5 :(得分:0)
我为自己的项目编写了一个函数来执行此操作(但它不使用numpy):
def partition(seq, chunks):
"""Splits the sequence into equal sized chunks and them as a list"""
result = []
for i in range(chunks):
chunk = []
for element in seq[i:len(seq):chunks]:
chunk.append(element)
result.append(chunk)
return result
如果你想让这些块被随机化,只需在传入之前对列表进行洗牌。
答案 6 :(得分:0)
这是一个以分层方式将数据分成n = 5倍的代码
% X = data array
% y = Class_label
from sklearn.cross_validation import StratifiedKFold
skf = StratifiedKFold(y, n_folds=5)
for train_index, test_index in skf:
print("TRAIN:", train_index, "TEST:", test_index)
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
答案 7 :(得分:0)
感谢pberkes的回答。我刚修改它以避免(1)取样时取样(2)在训练和测试中都发生了重复的实例:
training_idx = np.random.choice(X.shape[0], int(np.round(X.shape[0] * 0.8)),replace=False)
training_idx = np.random.permutation(np.arange(X.shape[0]))[:np.round(X.shape[0] * 0.8)]
test_idx = np.setdiff1d( np.arange(0,X.shape[0]), training_idx)
答案 8 :(得分:0)
在阅读并考虑了(许多..)将数据拆分以进行训练和测试的不同方式之后,我决定计时了!
我使用了4种不同的方法(没有一个使用sklearn库,我相信它将得到最好的结果,因为它是经过精心设计和测试的代码):
我为4种不同方法计时的代码:
import numpy as np
arr = np.random.rand(100, 3)
X = arr[:,:2]
Y = arr[:,2]
spl = 0.7
N = len(arr)
sample = int(spl*N)
#%% Method 1: shuffle the whole matrix arr and then split
np.random.shuffle(arr)
x_train, x_test, y_train, y_test = X[:sample,:], X[sample:, :], Y[:sample, ], Y[sample:,]
#%% Method 2: shuffle the indecies and then shuffle and apply to X and Y
train_idx = np.random.choice(N, sample)
Xtrain = X[train_idx]
Ytrain = Y[train_idx]
test_idx = [idx for idx in range(N) if idx not in train_idx]
Xtest = X[test_idx]
Ytest = Y[test_idx]
#%% Method 3: shuffle indicies without a for loop
idx = np.random.permutation(arr.shape[0]) # can also use random.shuffle
train_idx, test_idx = idx[:sample], idx[sample:]
x_train, x_test, y_train, y_test = X[train_idx,:], X[test_idx,:], Y[train_idx,], Y[test_idx,]
#%% Method 4: using pandas dataframe to split
import pandas as pd
df = pd.read_csv(file_path, header=None) # Some csv file (I used some file with 3 columns)
train = df.sample(frac=0.7, random_state=200)
test = df.drop(train.index)
在这段时间内,执行1000次循环的3次重复的最短时间为:
我希望对您有所帮助!
答案 9 :(得分:0)
就像您一样,您不仅需要拆分训练和测试,而且还需要交叉验证以确保您的模型能够概括。 在这里,我假设70%的培训数据,20%的确认数据和10%的坚持/测试数据。
签出np.split:
如果index_or_sections是一维排序的整数数组,则条目 指示将数组沿轴拆分的位置。例如[2,3] 对于轴= 0,将导致
ary [:2] ary [2:3] ary [3:]
t, v, h = np.split(df.sample(frac=1, random_state=1), [int(0.7*len(df)), int(0.9*len(df))])
答案 10 :(得分:0)
分成火车测试并且有效
x =np.expand_dims(np.arange(100), -1)
print(x)
indices = np.random.permutation(x.shape[0])
training_idx, test_idx, val_idx = indices[:int(x.shape[0]*.9)], indices[int(x.shape[0]*.9):int(x.shape[0]*.95)], indices[int(x.shape[0]*.9):int(x.shape[0]*.95)]
training, test, val = x[training_idx,:], x[test_idx,:], x[val_idx,:]
print(training, test, val)
答案 11 :(得分:0)
我知道我的解决方案不是最好的,但是当您想以一种简单的方式拆分数据时,特别是在向新手教授数据科学时,它会派上用场!
def simple_split(descriptors, targets):
testX_indices = [i for i in range(descriptors.shape[0]) if i % 4 == 0]
validX_indices = [i for i in range(descriptors.shape[0]) if i % 4 == 1]
trainX_indices = [i for i in range(descriptors.shape[0]) if i % 4 >= 2]
TrainX = descriptors[trainX_indices, :]
ValidX = descriptors[validX_indices, :]
TestX = descriptors[testX_indices, :]
TrainY = targets[trainX_indices]
ValidY = targets[validX_indices]
TestY = targets[testX_indices]
return TrainX, ValidX, TestX, TrainY, ValidY, TestY
根据此代码,数据将分为三部分-测试部分为1/4,验证部分为1/4,训练集为2/4。