假设我有以下代码:
import numpy as np
import pandas as pd
x = np.array([1.0, 1.1, 1.2, 1.3, 1.4])
s = pd.Series(x, index=[1, 2, 3, 4, 5])
这会产生以下s
:
1 1.0
2 1.1
3 1.2
4 1.3
5 1.4
现在我要创建的是一个大小为n
的滚动窗口,但我不想采用每个窗口的均值或标准偏差,我只想要数组。所以,假设n = 3
。我想要一个转换,在输入s
:
1 array([1.0, nan, nan])
2 array([1.1, 1.0, nan])
3 array([1.2, 1.1, 1.0])
4 array([1.3, 1.2, 1.1])
5 array([1.4, 1.3, 1.2])
我该怎么做?
答案 0 :(得分:12)
这是一种方法
In [294]: arr = [s.shift(x).values[::-1][:3] for x in range(len(s))[::-1]]
In [295]: arr
Out[295]:
[array([ 1., nan, nan]),
array([ 1.1, 1. , nan]),
array([ 1.2, 1.1, 1. ]),
array([ 1.3, 1.2, 1.1]),
array([ 1.4, 1.3, 1.2])]
In [296]: pd.Series(arr, index=s.index)
Out[296]:
1 [1.0, nan, nan]
2 [1.1, 1.0, nan]
3 [1.2, 1.1, 1.0]
4 [1.3, 1.2, 1.1]
5 [1.4, 1.3, 1.2]
dtype: object
答案 1 :(得分:5)
这是使用NumPy broadcasting
-
n = 3 # window length
idx = np.arange(n)[::-1] + np.arange(len(s))[:,None] - n + 1
out = s.get_values()[idx]
out[idx<0] = np.nan
这可以将输出作为2D数组。
获取一个系列,其中每个元素都将每个窗口保存为列表 -
In [40]: pd.Series(out.tolist())
Out[40]:
0 [1.0, nan, nan]
1 [1.1, 1.0, nan]
2 [1.2, 1.1, 1.0]
3 [1.3, 1.2, 1.1]
4 [1.4, 1.3, 1.2]
dtype: object
如果您希望获得一维数组拆分数组的列表,可以在输出上使用np.split
,如下所示 -
out_split = np.split(out,out.shape[0],axis=0)
示例运行 -
In [100]: s
Out[100]:
1 1.0
2 1.1
3 1.2
4 1.3
5 1.4
dtype: float64
In [101]: n = 3
In [102]: idx = np.arange(n)[::-1] + np.arange(len(s))[:,None] - n + 1
...: out = s.get_values()[idx]
...: out[idx<0] = np.nan
...:
In [103]: out
Out[103]:
array([[ 1. , nan, nan],
[ 1.1, 1. , nan],
[ 1.2, 1.1, 1. ],
[ 1.3, 1.2, 1.1],
[ 1.4, 1.3, 1.2]])
In [104]: np.split(out,out.shape[0],axis=0)
Out[104]:
[array([[ 1., nan, nan]]),
array([[ 1.1, 1. , nan]]),
array([[ 1.2, 1.1, 1. ]]),
array([[ 1.3, 1.2, 1.1]]),
array([[ 1.4, 1.3, 1.2]])]
strides
为了提高内存效率,我们可以使用一个跨步的 - strided_axis0
,类似于@B. M.'s solution
,但更通用一个。
因此,要获得具有NaN的二维数组的数组,这是第一个元素 -
In [35]: strided_axis0(s.values, fillval=np.nan, L=3)
Out[35]:
array([[nan, nan, 1. ],
[nan, 1. , 1.1],
[1. , 1.1, 1.2],
[1.1, 1.2, 1.3],
[1.2, 1.3, 1.4]])
使用NaN作为填充符来获取每个行中原始元素之后的元素的2D数组以及要翻转的元素的顺序,如问题中所述 -
In [36]: strided_axis0(s.values, fillval=np.nan, L=3)[:,::-1]
Out[36]:
array([[1. , nan, nan],
[1.1, 1. , nan],
[1.2, 1.1, 1. ],
[1.3, 1.2, 1.1],
[1.4, 1.3, 1.2]])
要获得包含每个窗口作为列表的每个元素的系列,只需使用pd.Series(out.tolist())
包含早期方法,out
为2D
数组输出 -
In [38]: pd.Series(strided_axis0(s.values, fillval=np.nan, L=3)[:,::-1].tolist())
Out[38]:
0 [1.0, nan, nan]
1 [1.1, 1.0, nan]
2 [1.2, 1.1, 1.0]
3 [1.3, 1.2, 1.1]
4 [1.4, 1.3, 1.2]
dtype: object
答案 2 :(得分:2)
您的数据看起来像一个跨步阵列:
data=np.lib.stride_tricks.as_strided(np.concatenate(([NaN]*2,s))[2:],(5,3),(8,-8))
"""
array([[ 1. , nan, nan],
[ 1.1, 1. , nan],
[ 1.2, 1.1, 1. ],
[ 1.3, 1.2, 1.1],
[ 1.4, 1.3, 1.2]])
"""
然后转换为系列:
pd.Series(map(list,data))
""""
0 [1.0, nan, nan]
1 [1.1, 1.0, nan]
2 [1.2, 1.1, 1.0]
3 [1.3, 1.2, 1.1]
4 [1.4, 1.3, 1.2]
dtype: object
""""
答案 3 :(得分:1)
如果您在系列的开头和结尾添加了缺少的nan
,则使用一个简单的窗口
def wndw(s,size=3):
stretched = np.hstack([
np.array([np.nan]*(size-1)),
s.values.T,
np.array([np.nan]*size)
])
for begin in range(len(stretched)-size):
end = begin+size
yield stretched[begin:end][::-1]
for arr in wndw(s, 3):
print arr