我有一个独立变量x和两个因变量y1和y2的数据,如下所示:
x y1 y2
-1.5 16.25 1.02
-1.25 17 1.03
-1 15 1.03
-0.75 9 1.09
-0.5 5.9 1.15
-0.25 5.2 1.17
0 4.77 1.19
+0.25 3.14 1.35
+0.5 2.5 1.54
+0.75 2.21 1.69
+1 1.91 1.96
+1.25 1.64 2.27
+1.5 1.52 2.56
+1.75 1.37 3.06
+2 1.24 4.12
+2.25 1.2 4.44
+2.5 1.18 4.95
+2.75 1.12 6.49
+3 1.07 10
因此,此处x where y1 = y2
的值大约为+1
。如何读取数据并在python中计算?
答案 0 :(得分:2)
天真的解决方案是这样的:
txt = """-1.5 16.25 1.02
-1.25 17 1.03
-1 15 1.03
-0.75 9 1.09
-0.5 5.9 1.15
-0.25 5.2 1.17
0 4.77 1.19
+0.25 3.14 1.35
+0.5 2.5 1.54
+0.75 2.21 1.69
+1 1.91 1.96
+1.25 1.64 2.27
+1.5 1.52 2.56
+1.75 1.37 3.06
+2 1.24 4.12
+2.25 1.2 4.44
+2.5 1.18 4.95
+2.75 1.12 6.49
+3 1.07 10"""
import numpy as np
# StringIO behaves like a file object, use it to simulate reading from a file
from StringIO import StringIO
x,y1,y2=np.transpose(np.loadtxt(StringIO(txt)))
p1 = np.poly1d(np.polyfit(x, y1, 1))
p2 = np.poly1d(np.polyfit(x, y2, 1))
print 'equations: ',p1,p2
#y1 and y2 have to be equal for some x, that you solve for :
# a x+ b = c x + d --> (a-c) x= d- b
a,b=list(p1)
c,d=list(p2)
x=(d-b)/(a-c)
print 'solution x= ',x
输出:
equations:
-3.222 x + 7.323
1.409 x + 1.686
solution x= 1.21717324767
然后你绘制了'线':
import matplotlib.pyplot as p
%matplotlib inline
p.plot(x,y1,'.-')
p.plot(x,y2,'.-')
而且你意识到你不能使用线性假设,而是针对一些细分市场。
x,y1,y2=np.transpose(np.loadtxt(StringIO(txt)))
x,y1,y2=x[8:13],y1[8:13],y2[8:13]
p1 = np.poly1d(np.polyfit(x, y1, 1))
p2 = np.poly1d(np.polyfit(x, y2, 1))
print 'equations: ',p1,p2
a,b=list(p1)
c,d=list(p2)
x0=(d-b)/(a-c)
print 'solution x= ',x0
p.plot(x,y1,'.-')
p.plot(x,y2,'.-')
输出:
equations:
-1.012 x + 2.968
1.048 x + 0.956
solution x= 0.976699029126
即使是现在也可以通过留下两个点来改善(看起来非常线性,但这可能是巧合的几点)。
x,y1,y2=np.transpose(np.loadtxt(StringIO(txt)))
x1,x2=x[8:12],x[9:13]
y1,y2=y1[8:12],y2[9:13]
p1 = np.poly1d(np.polyfit(x1, y1, 1))
p2 = np.poly1d(np.polyfit(x2, y2, 1))
print 'equations: ',p1,p2
a,b=list(p1)
c,d=list(p2)
x0=(d-b)/(a-c)
print 'solution x= ',x0
import matplotlib.pyplot as p
%matplotlib inline
p.plot(x1,y1,'.-')
p.plot(x2,y2,'.-')
输出:
equations:
-1.152 x + 3.073
1.168 x + 0.806
solution x= 0.977155172414
可能更好的方法是使用更多的点并应用二阶插值np.poly1d(np.polyfit(x,y1,2))
,然后求解两个二阶多项式的相等性,我将其作为练习(二次方程)留给读者。