在python pandas的循环中合并大数据帧中的许多子数据帧

时间:2016-04-14 23:30:12

标签: python pandas

我的程序将生成许多小数据框,例如

下面的那些
       Column_A  Column_B
 row1         1         2

       Column_A  Column_B
 row2         3         4

       Column_C  Column_D
 row1         5         6

       Column_C  Column_D
 row2         7         8

我希望将它们合并为

       Column_A  Column_B  Column_C  Column_D
 row1         1         2         5         6
 row2         3         4         7         8

当需要一次合并一个数据帧时,如何做到这一点。 生成较小数据帧的代码是

 df = {}
 df[0] = pd.DataFrame({'Column_A' : [1], 
                       'Column_B' : [2]},
                      index = ["row1"])
 df[1] = pd.DataFrame({'Column_A' : [3],
                       'Column_B' : [4]},
                       index = ["row2"])
 df[2] = pd.DataFrame({'Column_C' : [5],
                       'Column_D' : [6]},
                      index = ["row1"]) 
 df[3] = pd.DataFrame({'Column_C' : [7],
                       'Column_D' : [8]},
                      index = ["row2"])

我尝试使用merge和concat,但是他们总是通过使用_x,_y附加现有列或只重复列来创建更多列

例如,以下列方式合并

pdf = pd.DataFrame()

for i in range(4):
    pdf = pdf.merge(pd.DataFrame(df[i], index=["row{}".format(((i)%2)+1)]), how='outer', left_index=True, right_index=True)

生成

      Column_A_x  Column_B_x  Column_A_y  Column_B_y  Column_C_x  Column_D_x  \
row1         1.0         2.0         NaN         NaN         5.0         6.0   
row2         NaN         NaN         3.0         4.0         NaN         NaN   

      Column_C_y  Column_D_y  
row1         NaN         NaN  
row2         7.0         8.0  

有人可以用正确的方式帮我合并吗

2 个答案:

答案 0 :(得分:2)

如果你能以任何方式将左右部分保存在不同的容器中,它会对你有所帮助。例如。列A和B在一个中,列C和D在另一个中。这样你可以很容易地使用pandas.concat将它们拼凑在一起。在构建了两半之后,在这种情况下你需要使用索引merge

使用原始的df字典:

In [11]: pd.concat([df[0], df[1]]).merge(pd.concat([df[2], df[3]]), left_index=True, right_index=True)
Out[11]: 
      Column_A  Column_B  Column_C  Column_D
row1         1         2         5         6
row2         3         4         7         8

使用左右两半的容器,代码读得更好(并且不需要循环):

left = [pd.DataFrame({'Column_A' : [1], 
                      'Column_B' : [2]},
                     index = ["row1"]),
        pd.DataFrame({'Column_A' : [3],
                      'Column_B' : [4]},
                     index = ["row2"])]

right = [pd.DataFrame({'Column_C' : [5],
                       'Column_D' : [6]},
                      index = ["row1"]),
         pd.DataFrame({'Column_C' : [7],
                       'Column_D' : [8]},
                      index = ["row2"])]

df = pd.concat(left).merge(pd.concat(right), left_index=True, right_index=True)

最后,如果您真的别无选择,只能将它们存储在字典中,如示例所示:

from functools import reduce, partial
from itertools import groupby

pdf = reduce(
    partial(pd.merge, left_index=True, right_index=True, how='outer'),
    (pd.concat(list(g))
     for cols, g in groupby(sorted(df.values(),
                                   key=lambda df_: tuple(df_.columns)),
                            lambda df_: tuple(df_.columns)))
)

答案 1 :(得分:1)

试试这个:

In [186]: result = pd.concat([df[key].reset_index() for key in df.keys()],
   .....:                    ignore_index=True) \
   .....:            .set_index('index') \
   .....:            .groupby(level=0) \
   .....:            .sum() \
   .....:            .astype(int)

In [187]: result
Out[187]:
       Column_A  Column_B  Column_C  Column_D
index
row1          1         2         5         6
row2          3         4         7         8