我在sklearn管道中使用递归功能消除,管道看起来像这样:
from sklearn.pipeline import FeatureUnion, Pipeline
from sklearn import feature_selection
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import LinearSVC
X = ['I am a sentence', 'an example']
Y = [1, 2]
X_dev = ['another sentence']
# classifier
LinearSVC1 = LinearSVC(tol=1e-4, C = 0.10000000000000001)
f5 = feature_selection.RFE(estimator=LinearSVC1, n_features_to_select=500, step=1)
pipeline = Pipeline([
('features', FeatureUnion([
('tfidf', TfidfVectorizer(ngram_range=(1, 3), max_features= 4000)),
('custom_features', CustomFeatures())])),
('rfe_feature_selection', f5),
('clf', LinearSVC1),
])
pipeline.fit(X, Y)
y_pred = pipeline.predict(X_dev)
如何获取RFE选择的功能的功能名称? RFE应该选择最好的500个功能,但我真的需要看看已经选择了哪些功能。
编辑:
我有一个复杂的管道,它包含多个管道和特征联合,百分位特征选择以及最后的递归特征消除:
fs = feature_selection.SelectPercentile(feature_selection.chi2, percentile=90)
fs_vect = feature_selection.SelectPercentile(feature_selection.chi2, percentile=80)
f5 = feature_selection.RFE(estimator=svc, n_features_to_select=600, step=3)
countVecWord = TfidfVectorizer(ngram_range=(1, 3), max_features=2000, analyzer=u'word', sublinear_tf=True, use_idf = True, min_df=2, max_df=0.85, lowercase = True)
countVecWord_tags = TfidfVectorizer(ngram_range=(1, 4), max_features= 1000, analyzer=u'word', min_df=2, max_df=0.85, sublinear_tf=True, use_idf = True, lowercase = False)
pipeline = Pipeline([
('union', FeatureUnion(
transformer_list=[
('vectorized_pipeline', Pipeline([
('union_vectorizer', FeatureUnion([
('stem_text', Pipeline([
('selector', ItemSelector(key='stem_text')),
('stem_tfidf', countVecWord)
])),
('pos_text', Pipeline([
('selector', ItemSelector(key='pos_text')),
('pos_tfidf', countVecWord_tags)
])),
])),
('percentile_feature_selection', fs_vect)
])),
('custom_pipeline', Pipeline([
('custom_features', FeatureUnion([
('pos_cluster', Pipeline([
('selector', ItemSelector(key='pos_text')),
('pos_cluster_inner', pos_cluster)
])),
('stylistic_features', Pipeline([
('selector', ItemSelector(key='raw_text')),
('stylistic_features_inner', stylistic_features)
])),
])),
('percentile_feature_selection', fs),
('inner_scale', inner_scaler)
])),
],
# weight components in FeatureUnion
# n_jobs=6,
transformer_weights={
'vectorized_pipeline': 0.8, # 0.8,
'custom_pipeline': 1.0 # 1.0
},
)),
('rfe_feature_selection', f5),
('clf', classifier),
])
我会尝试解释这些步骤。第一个Pipeline由向量化器组成,称为" vectorized_pipeline"所有这些都有一个函数" get_feature_names"。第二个Pipeline由我自己的特性组成,我已经使用fit,transform和get_feature_names函数实现了它们。当我使用@Kevin的建议时,我收到一个错误,即' union' (这是我在管道中的顶部元素的名称)没有get_feature_names函数:
support = pipeline.named_steps['rfe_feature_selection'].support_
feature_names = pipeline.named_steps['union'].get_feature_names()
print np.array(feature_names)[support]
此外,当我尝试从各个FeatureUnion获取功能名称时,如下所示:
support = pipeline.named_steps['rfe_feature_selection'].support_
feature_names = pipeline_age.named_steps['union_vectorizer'].get_feature_names()
print np.array(feature_names)[support]
我收到一个关键错误:
feature_names = pipeline.named_steps['union_vectorizer'].get_feature_names()
KeyError: 'union_vectorizer'
答案 0 :(得分:8)
您可以使用属性named_steps
访问Pipeline
的每个步骤,这是iris数据集上的一个示例,它只选择2
个功能,但解决方案会缩放。
from sklearn import datasets
from sklearn import feature_selection
from sklearn.svm import LinearSVC
iris = datasets.load_iris()
X = iris.data
y = iris.target
# classifier
LinearSVC1 = LinearSVC(tol=1e-4, C = 0.10000000000000001)
f5 = feature_selection.RFE(estimator=LinearSVC1, n_features_to_select=2, step=1)
pipeline = Pipeline([
('rfe_feature_selection', f5),
('clf', LinearSVC1)
])
pipeline.fit(X, y)
使用named_steps
,您可以访问管道中变换对象的属性和方法。 RFE
属性support_
(或方法get_support()
)将返回所选要素的布尔掩码:
support = pipeline.named_steps['rfe_feature_selection'].support_
现在support
是一个数组,您可以使用它来有效地提取所选要素(列)的名称。确保您的功能名称位于numpy array
,而不是python列表。
import numpy as np
feature_names = np.array(iris.feature_names) # transformed list to array
feature_names[support]
array(['sepal width (cm)', 'petal width (cm)'],
dtype='|S17')
根据我上面的评论,以下是删除了CustomFeautures()函数的示例:
from sklearn.pipeline import FeatureUnion, Pipeline
from sklearn import feature_selection
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import LinearSVC
import numpy as np
X = ['I am a sentence', 'an example']
Y = [1, 2]
X_dev = ['another sentence']
# classifier
LinearSVC1 = LinearSVC(tol=1e-4, C = 0.10000000000000001)
f5 = feature_selection.RFE(estimator=LinearSVC1, n_features_to_select=500, step=1)
pipeline = Pipeline([
('features', FeatureUnion([
('tfidf', TfidfVectorizer(ngram_range=(1, 3), max_features= 4000))])),
('rfe_feature_selection', f5),
('clf', LinearSVC1),
])
pipeline.fit(X, Y)
y_pred = pipeline.predict(X_dev)
support = pipeline.named_steps['rfe_feature_selection'].support_
feature_names = pipeline.named_steps['features'].get_feature_names()
np.array(feature_names)[support]