我见过许多好的对象池实现。例如:C# Object Pooling Pattern implementation。
但似乎线程安全的人总是使用锁并且从不尝试使用Interlocked。*操作。
似乎很容易编写一个不允许将对象返回到池中的对象(只是一个带有Interlocked.Increments指针的大数组)。但我想不出任何方法来编写一个让你返回对象的方法。有没有人这样做过?
答案 0 :(得分:2)
无论如何都要仔细考虑为什么需要对象池 - 这里没有讨论被池化的对象。对于大多数对象,使用托管堆将提供必要的功能,而不会在您自己的代码中出现新池管理器的麻烦。只有当您的对象封装难以建立或难以释放的资源时,才需要考虑托管代码中的对象池。
如果你确实需要自己做,那么有一个轻量级的读/写锁可能对优化池访问很有用。
http://theburningmonk.com/2010/02/threading-using-readerwriterlockslim/
答案 1 :(得分:2)
我使用无锁队列构建为单链表。下面有一些不相关的东西被删除,我没有测试它删除的东西,但至少应该给出这个想法。
internal sealed class LockFreeQueue<T>
{
private sealed class Node
{
public readonly T Item;
public Node Next;
public Node(T item)
{
Item = item;
}
}
private volatile Node _head;
private volatile Node _tail;
public LockFreeQueue()
{
_head = _tail = new Node(default(T));
}
#pragma warning disable 420 // volatile semantics not lost as only by-ref calls are interlocked
public void Enqueue(T item)
{
Node newNode = new Node(item);
for(;;)
{
Node curTail = _tail;
if (Interlocked.CompareExchange(ref curTail.Next, newNode, null) == null) //append to the tail if it is indeed the tail.
{
Interlocked.CompareExchange(ref _tail, newNode, curTail); //CAS in case we were assisted by an obstructed thread.
return;
}
else
{
Interlocked.CompareExchange(ref _tail, curTail.Next, curTail); //assist obstructing thread.
}
}
}
public bool TryDequeue(out T item)
{
for(;;)
{
Node curHead = _head;
Node curTail = _tail;
Node curHeadNext = curHead.Next;
if (curHead == curTail)
{
if (curHeadNext == null)
{
item = default(T);
return false;
}
else
Interlocked.CompareExchange(ref _tail, curHeadNext, curTail); // assist obstructing thread
}
else
{
item = curHeadNext.Item;
if (Interlocked.CompareExchange(ref _head, curHeadNext, curHead) == curHead)
{
return true;
}
}
}
}
#pragma warning restore 420
}
如果你的汇集原因是分配和收集的原始性能考虑因素,那么这个分配和收集的事实使它变得毫无用处。如果是因为底层资源获取和/或发布成本高昂,或者因为实例缓存了“学习”信息,那么它可能适合。
答案 2 :(得分:1)
返回引用对象的问题在于它首先阻止了锁定对它的访问的整个尝试。您不能使用基本的lock()命令来控制对象范围之外的资源的访问,这意味着传统的getter / setter设计不起作用。
可能工作的东西是一个包含可锁定资源的对象,并允许传入lambda或委托来利用资源。该对象将锁定资源,运行委托,然后在委托完成时解锁。这基本上可以控制将代码运行到锁定对象的手中,但是允许比Interlocked更复杂的操作。
另一种可能的方法是公开getter和setter,但是使用“checkout”模型实现自己的访问控制;当一个线程被允许“获取”一个值时,在一个锁定的内部资源中保持对当前线程的引用。在该线程调用setter,aborts等之前,尝试访问getter的所有其他线程都保存在Yield循环中。一旦资源被重新检入,下一个线程就可以获得它。
public class Library
{
private Book controlledBook
private Thread checkoutThread;
public Book CheckOutTheBook()
{
while(Thread.CurrentThread != checkoutThread && checkoutThread.IsAlive)
thread.CurrentThread.Yield();
lock(this)
{
checkoutThread = Thread.CurrentThread;
return controlledBook;
}
}
public void CheckInTheBook(Book theBook)
{
if(Thread.CurrentThread != checkoutThread)
throw new InvalidOperationException("This thread does not have the resource checked out.");
lock(this)
{
checkoutThread = null;
controlledBook = theBook;
}
}
}
现在,请注意,这仍然需要对象的用户之间的一些合作。特别是,这种逻辑在设定者方面相当天真;没有检查出来就无法检查书。这条规则对消费者来说可能并不明显,不正确的使用可能导致未处理的异常。此外,所有用户必须知道在他们终止之前是否会停止使用它来检查对象,即使基本的C#知识会指示如果您获得引用类型,您所做的更改会反映在任何地方。但是,这可以用作对非线程安全资源的基本“一次一个”访问控制。
答案 3 :(得分:1)
您是否查看过.Net 4中的Concurrent集合。
答案 4 :(得分:0)
我无法看到使用Interlocked也有任何实际好处,因为它必须以不安全的方式使用。锁定,只是在对象的内存空间上改变一点标志 - 确实非常快。互锁有点好,因为它可以在寄存器上而不是在存储器中完成。
您是否遇到性能问题?这些代码的主要目的是什么?在一天结束时,C#旨在从您那里抽象内存管理,以便您专注于您的业务问题。
请记住,如果您需要自己管理内存并使用不安全的指针,则必须固定内存区域=额外的性能成本。
答案 5 :(得分:0)
好问题。使用快速对象池编写包含零分配模式的高性能软件至关重要。
Microsoft在Apache License 2.0下发布了一个对象池
它避免使用锁,只使用Interlocked.CompareExchange进行分配(Get)。当您在大多数用例中同时获取和释放少量对象时,它似乎特别快。如果您获得大量对象,那么它似乎不太优化,然后释放批处理,以便您的应用程序的行为类似于您应该修改的对象。
我认为Interlocked.Increment方法,如您所建议的,可能更通用,并且对批处理用例更有效。
http://source.roslyn.io/#Microsoft.CodeAnalysis.Workspaces/ObjectPool%25601.cs,98aa6d9b3c4e313b
// Copyright (c) Microsoft. All Rights Reserved. Licensed under the Apache License, Version 2.0. See License.txt in the project root for license information.
// define TRACE_LEAKS to get additional diagnostics that can lead to the leak sources. note: it will
// make everything about 2-3x slower
//
// #define TRACE_LEAKS
// define DETECT_LEAKS to detect possible leaks
// #if DEBUG
// #define DETECT_LEAKS //for now always enable DETECT_LEAKS in debug.
// #endif
using System;
using System.Diagnostics;
using System.Threading;
#if DETECT_LEAKS
using System.Runtime.CompilerServices;
#endif
namespace Microsoft.CodeAnalysis.PooledObjects
{
/// <summary>
/// Generic implementation of object pooling pattern with predefined pool size limit. The main
/// purpose is that limited number of frequently used objects can be kept in the pool for
/// further recycling.
///
/// Notes:
/// 1) it is not the goal to keep all returned objects. Pool is not meant for storage. If there
/// is no space in the pool, extra returned objects will be dropped.
///
/// 2) it is implied that if object was obtained from a pool, the caller will return it back in
/// a relatively short time. Keeping checked out objects for long durations is ok, but
/// reduces usefulness of pooling. Just new up your own.
///
/// Not returning objects to the pool in not detrimental to the pool's work, but is a bad practice.
/// Rationale:
/// If there is no intent for reusing the object, do not use pool - just use "new".
/// </summary>
internal class ObjectPool<T> where T : class
{
[DebuggerDisplay("{Value,nq}")]
private struct Element
{
internal T Value;
}
/// <remarks>
/// Not using System.Func{T} because this file is linked into the (debugger) Formatter,
/// which does not have that type (since it compiles against .NET 2.0).
/// </remarks>
internal delegate T Factory();
// Storage for the pool objects. The first item is stored in a dedicated field because we
// expect to be able to satisfy most requests from it.
private T _firstItem;
private readonly Element[] _items;
// factory is stored for the lifetime of the pool. We will call this only when pool needs to
// expand. compared to "new T()", Func gives more flexibility to implementers and faster
// than "new T()".
private readonly Factory _factory;
#if DETECT_LEAKS
private static readonly ConditionalWeakTable<T, LeakTracker> leakTrackers = new ConditionalWeakTable<T, LeakTracker>();
private class LeakTracker : IDisposable
{
private volatile bool disposed;
#if TRACE_LEAKS
internal volatile object Trace = null;
#endif
public void Dispose()
{
disposed = true;
GC.SuppressFinalize(this);
}
private string GetTrace()
{
#if TRACE_LEAKS
return Trace == null ? "" : Trace.ToString();
#else
return "Leak tracing information is disabled. Define TRACE_LEAKS on ObjectPool`1.cs to get more info \n";
#endif
}
~LeakTracker()
{
if (!this.disposed && !Environment.HasShutdownStarted)
{
var trace = GetTrace();
// If you are seeing this message it means that object has been allocated from the pool
// and has not been returned back. This is not critical, but turns pool into rather
// inefficient kind of "new".
Debug.WriteLine($"TRACEOBJECTPOOLLEAKS_BEGIN\nPool detected potential leaking of {typeof(T)}. \n Location of the leak: \n {GetTrace()} TRACEOBJECTPOOLLEAKS_END");
}
}
}
#endif
internal ObjectPool(Factory factory)
: this(factory, Environment.ProcessorCount * 2)
{ }
internal ObjectPool(Factory factory, int size)
{
Debug.Assert(size >= 1);
_factory = factory;
_items = new Element[size - 1];
}
private T CreateInstance()
{
var inst = _factory();
return inst;
}
/// <summary>
/// Produces an instance.
/// </summary>
/// <remarks>
/// Search strategy is a simple linear probing which is chosen for it cache-friendliness.
/// Note that Free will try to store recycled objects close to the start thus statistically
/// reducing how far we will typically search.
/// </remarks>
internal T Allocate()
{
// PERF: Examine the first element. If that fails, AllocateSlow will look at the remaining elements.
// Note that the initial read is optimistically not synchronized. That is intentional.
// We will interlock only when we have a candidate. in a worst case we may miss some
// recently returned objects. Not a big deal.
T inst = _firstItem;
if (inst == null || inst != Interlocked.CompareExchange(ref _firstItem, null, inst))
{
inst = AllocateSlow();
}
#if DETECT_LEAKS
var tracker = new LeakTracker();
leakTrackers.Add(inst, tracker);
#if TRACE_LEAKS
var frame = CaptureStackTrace();
tracker.Trace = frame;
#endif
#endif
return inst;
}
private T AllocateSlow()
{
var items = _items;
for (int i = 0; i < items.Length; i++)
{
// Note that the initial read is optimistically not synchronized. That is intentional.
// We will interlock only when we have a candidate. in a worst case we may miss some
// recently returned objects. Not a big deal.
T inst = items[i].Value;
if (inst != null)
{
if (inst == Interlocked.CompareExchange(ref items[i].Value, null, inst))
{
return inst;
}
}
}
return CreateInstance();
}
/// <summary>
/// Returns objects to the pool.
/// </summary>
/// <remarks>
/// Search strategy is a simple linear probing which is chosen for it cache-friendliness.
/// Note that Free will try to store recycled objects close to the start thus statistically
/// reducing how far we will typically search in Allocate.
/// </remarks>
internal void Free(T obj)
{
Validate(obj);
ForgetTrackedObject(obj);
if (_firstItem == null)
{
// Intentionally not using interlocked here.
// In a worst case scenario two objects may be stored into same slot.
// It is very unlikely to happen and will only mean that one of the objects will get collected.
_firstItem = obj;
}
else
{
FreeSlow(obj);
}
}
private void FreeSlow(T obj)
{
var items = _items;
for (int i = 0; i < items.Length; i++)
{
if (items[i].Value == null)
{
// Intentionally not using interlocked here.
// In a worst case scenario two objects may be stored into same slot.
// It is very unlikely to happen and will only mean that one of the objects will get collected.
items[i].Value = obj;
break;
}
}
}
/// <summary>
/// Removes an object from leak tracking.
///
/// This is called when an object is returned to the pool. It may also be explicitly
/// called if an object allocated from the pool is intentionally not being returned
/// to the pool. This can be of use with pooled arrays if the consumer wants to
/// return a larger array to the pool than was originally allocated.
/// </summary>
[Conditional("DEBUG")]
internal void ForgetTrackedObject(T old, T replacement = null)
{
#if DETECT_LEAKS
LeakTracker tracker;
if (leakTrackers.TryGetValue(old, out tracker))
{
tracker.Dispose();
leakTrackers.Remove(old);
}
else
{
var trace = CaptureStackTrace();
Debug.WriteLine($"TRACEOBJECTPOOLLEAKS_BEGIN\nObject of type {typeof(T)} was freed, but was not from pool. \n Callstack: \n {trace} TRACEOBJECTPOOLLEAKS_END");
}
if (replacement != null)
{
tracker = new LeakTracker();
leakTrackers.Add(replacement, tracker);
}
#endif
}
#if DETECT_LEAKS
private static Lazy<Type> _stackTraceType = new Lazy<Type>(() => Type.GetType("System.Diagnostics.StackTrace"));
private static object CaptureStackTrace()
{
return Activator.CreateInstance(_stackTraceType.Value);
}
#endif
[Conditional("DEBUG")]
private void Validate(object obj)
{
Debug.Assert(obj != null, "freeing null?");
Debug.Assert(_firstItem != obj, "freeing twice?");
var items = _items;
for (int i = 0; i < items.Length; i++)
{
var value = items[i].Value;
if (value == null)
{
return;
}
Debug.Assert(value != obj, "freeing twice?");
}
}
}
}