我有一个坐在LINUX盒子里的Nvidia Tesla K80。我知道特斯拉K80内部有两个GPU。当我在该机器上运行OpenCL程序,循环遍历所有设备时,我会看到四个设备(4个Tesla K80)。你知道为什么会发生这种情况吗?
这是主机代码:
ret = clGetPlatformIDs(0, NULL, &platformCount); openclCheck(ret);
platforms = (cl_platform_id*) malloc(sizeof(cl_platform_id) * platformCount);
ret = clGetPlatformIDs(platformCount, platforms, NULL); openclCheck(ret);
printf("Detect %d platform available.\n",platformCount);
for (unsigned int i= 0; i < platformCount; i++) {
// get all devices
ret = clGetDeviceIDs(platforms[i], CL_DEVICE_TYPE_GPU, 0, NULL, &deviceCount); openclCheck(ret)
devices = (cl_device_id*) malloc(sizeof(cl_device_id) * deviceCount);
ret = clGetDeviceIDs(platforms[i], CL_DEVICE_TYPE_GPU, deviceCount, devices, NULL); openclCheck(ret)
printf("Platform %d. %d device available.\n", i+1, deviceCount );
// for each device print critical attributes
for (unsigned int j = 0; j < deviceCount; j++) {
// print device name
ret = clGetDeviceInfo(devices[j], CL_DEVICE_NAME, 0, NULL, &valueSize); openclCheck(ret)
value = (char*) malloc(valueSize);
ret = clGetDeviceInfo(devices[j], CL_DEVICE_NAME, valueSize, value, NULL); openclCheck(ret)
printf("\t%d. Device: %s\n", j+1, value);
free(value);
//more code here to print device attributes
这是输出:
Detect 1 platform available.
Platform 1. 4 device available.
1. Device: Tesla K80
1.1 Hardware version: OpenCL 1.2 CUDA
1.2 Software version: 352.79
1.3 OpenCL C version: OpenCL C 1.2
1.4 Parallel compute units: 13
2. Device: Tesla K80
2.1 Hardware version: OpenCL 1.2 CUDA
2.2 Software version: 352.79
2.3 OpenCL C version: OpenCL C 1.2
2.4 Parallel compute units: 13
3. Device: Tesla K80
3.1 Hardware version: OpenCL 1.2 CUDA
3.2 Software version: 352.79
3.3 OpenCL C version: OpenCL C 1.2
3.4 Parallel compute units: 13
4. Device: Tesla K80
4.1 Hardware version: OpenCL 1.2 CUDA
4.2 Software version: 352.79
4.3 OpenCL C version: OpenCL C 1.2
4.4 Parallel compute units: 13
答案 0 :(得分:0)
最有可能2个是32位实现,2个是来自多个驱动程序的64位实现。也许旧驱动程序需要通过某些显示驱动程序卸载程序软件进行清理。请检查每个器件实现的位数。
或者,有虚拟的gpu(GRID?)服务处于活动状态,导致重复的设备,所以也许你可以停用虚拟gpu来解决这个问题。